首页> 美国卫生研究院文献>PLoS Computational Biology >Lobe Specific Ca2+-Calmodulin Nano-Domain in Neuronal Spines: A Single Molecule Level Analysis
【2h】

Lobe Specific Ca2+-Calmodulin Nano-Domain in Neuronal Spines: A Single Molecule Level Analysis

机译:神经元棘中的叶特异性Ca2 +-钙调蛋白纳米域:单分子水平分析。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Calmodulin (CaM) is a ubiquitous Ca2+ buffer and second messenger that affects cellular function as diverse as cardiac excitability, synaptic plasticity, and gene transcription. In CA1 pyramidal neurons, CaM regulates two opposing Ca2+-dependent processes that underlie memory formation: long-term potentiation (LTP) and long-term depression (LTD). Induction of LTP and LTD require activation of Ca2+-CaM-dependent enzymes: Ca2+/CaM-dependent kinase II (CaMKII) and calcineurin, respectively. Yet, it remains unclear as to how Ca2+ and CaM produce these two opposing effects, LTP and LTD. CaM binds 4 Ca2+ ions: two in its N-terminal lobe and two in its C-terminal lobe. Experimental studies have shown that the N- and C-terminal lobes of CaM have different binding kinetics toward Ca2+ and its downstream targets. This may suggest that each lobe of CaM differentially responds to Ca2+ signal patterns. Here, we use a novel event-driven particle-based Monte Carlo simulation and statistical point pattern analysis to explore the spatial and temporal dynamics of lobe-specific Ca2+-CaM interaction at the single molecule level. We show that the N-lobe of CaM, but not the C-lobe, exhibits a nano-scale domain of activation that is highly sensitive to the location of Ca2+ channels, and to the microscopic injection rate of Ca2+ ions. We also demonstrate that Ca2+ saturation takes place via two different pathways depending on the Ca2+ injection rate, one dominated by the N-terminal lobe, and the other one by the C-terminal lobe. Taken together, these results suggest that the two lobes of CaM function as distinct Ca2+ sensors that can differentially transduce Ca2+ influx to downstream targets. We discuss a possible role of the N-terminal lobe-specific Ca2+-CaM nano-domain in CaMKII activation required for the induction of synaptic plasticity.
机译:钙调蛋白(CaM)是一种普遍存在的Ca 2 + 缓冲液和第二信使,其影响细胞功能,包括心脏兴奋性,突触可塑性和基因转录。在CA1锥体神经元中,CaM调节记忆形成基础的两个相反的Ca 2 + 依赖过程:长期增强(LTP)和长期抑郁(LTD)。 LTP和LTD的诱导需要激活Ca 2 + -CaM依赖性酶:Ca 2 + / CaM依赖性激酶II(CaMKII)和钙调磷酸酶。然而,关于Ca 2 + 和CaM如何产生LTP和LTD这两个相反的作用,目前还不清楚。 CaM结合4个Ca 2 + 离子:两个位于N末端波瓣,两个位于C末端波瓣。实验研究表明,CaM的N和C末端叶对Ca 2 + 及其下游靶标具有不同的结合动力学。这可能表明CaM的每个叶对Ca 2 + 信号模式都有不同的响应。在这里,我们使用一种新颖的基于事件驱动的基于粒子的蒙特卡洛模拟和统计点模式分析来探索在单个分子水平上特定于叶的Ca 2 + -CaM相互作用的时空动力学。我们表明,CaM的N瓣而不是C瓣显示出纳米级的激活域,该域对Ca 2 + 通道的位置以及显微注射高度敏感Ca 2 + 离子的比率我们还证明了Ca 2 + 饱和是通过两种不同的途径发生的,具体取决于Ca 2 + 的注入速率,一种受N末端叶支配,另一种受N端叶支配。通过C端叶。综上所述,这些结果表明,CaM的两个叶起着独特的Ca 2 + 传感器的作用,可以将Ca 2 + 的流入量差异地转导至下游目标。我们讨论了N端叶特异性Ca 2 + -CaM纳米域在诱导突触可塑性所需的CaMKII激活中的可能作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号