...
首页> 外文期刊>PLoS Computational Biology >Hierarchical Modeling of Activation Mechanisms in the ABL and EGFR Kinase Domains: Thermodynamic and Mechanistic Catalysts of Kinase Activation by Cancer Mutations
【24h】

Hierarchical Modeling of Activation Mechanisms in the ABL and EGFR Kinase Domains: Thermodynamic and Mechanistic Catalysts of Kinase Activation by Cancer Mutations

机译:ABL和EGFR激酶域中激活机制的层次建模:癌症突变激活激酶的热力学和机理催化剂。

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type) and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition and the enhanced stabilization of the active kinase form. The results of this study reconcile current experimental data with insights from theoretical approaches, pointing to general mechanistic aspects of activating transitions in protein kinases.
机译:ABL和EGFR激酶结构域的结构和功能研究最近提出了由致癌突变激活的常见机制。然而,通过癌症突变刺激激酶的动力学和机理方面,其刺激构象转变和组成性活性激酶形式的热力学稳定。我们目前由一组临床上重要的癌症突变体ABL-T315I,ABL-L387M,EGFR-T790M和EGFR-L858R组成的小组,对ABL和EGFR激酶域中的激活机制进行了大规模计算研究。我们还模拟了网守突变对构象动力学和ABL-SH2-SH3调控复合体功能状态中的变构相互作用的激活作用。使用包括同源性建模,分子动力学模拟,蛋白质稳定性分析,目标分子动力学和分子对接的计算方法层次结构进行了全面分析。总的来说,这项研究的结果揭示了由ABL和EGFR激酶结构域中的主要致癌突变引起的激酶激活的热力学和机理催化剂。通过使用ABL和EGFR的多种结晶状态,计算机模拟已使人们能够绘制出正常(野生型)和致癌激酶形式的构象波动和跃迁的动力学图。拟议的多阶段激活机理模型涉及不同构象状态之间的一系列协同过渡,包括疏水性脊柱的组装,Src状中间结构的形成以及协同断裂和特征性盐桥的形成,这表明过渡到活性激酶形式。我们建议通过癌症突变激活的分子机制可以模仿正常激酶的激活过程,但利用保守的结构催化剂来加速构象转变和增强活性激酶形式的稳定性。这项研究的结果使当前的实验数据与理论方法的见解相吻合,指出了蛋白激酶激活转变的一般机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号