...
首页> 外文期刊>PLoS Computational Biology >An Allosteric Mechanism for Switching between Parallel Tracks in Mammalian Sulfur Metabolism
【24h】

An Allosteric Mechanism for Switching between Parallel Tracks in Mammalian Sulfur Metabolism

机译:哺乳动物硫代谢中平行轨迹之间切换的变构机制

获取原文
           

摘要

Methionine (Met) is an essential amino acid that is needed for the synthesis of S-adenosylmethionine (AdoMet), the major biological methylating agent. Methionine used for AdoMet synthesis can be replenished via remethylation of homocysteine. Alternatively, homocysteine can be converted to cysteine via the transsulfuration pathway. Aberrations in methionine metabolism are associated with a number of complex diseases, including cancer, anemia, and neurodegenerative diseases. The concentration of methionine in blood and in organs is tightly regulated. Liver plays a key role in buffering blood methionine levels, and an interesting feature of its metabolism is that parallel tracks exist for the synthesis and utilization of AdoMet. To elucidate the molecular mechanism that controls metabolic fluxes in liver methionine metabolism, we have studied the dependencies of AdoMet concentration and methionine consumption rate on methionine concentration in native murine hepatocytes at physiologically relevant concentrations (40–400 μM). We find that both [AdoMet] and methionine consumption rates do not change gradually with an increase in [Met] but rise sharply (~10-fold) in the narrow Met interval from 50 to 100 μM. Analysis of our experimental data using a mathematical model reveals that the sharp increase in [AdoMet] and the methionine consumption rate observed within the trigger zone are associated with metabolic switching from methionine conservation to disposal, regulated allosterically by switching between parallel pathways. This regulatory switch is triggered by [Met] and provides a mechanism for stabilization of methionine levels in blood over wide variations in dietary methionine intake.
机译:蛋氨酸(Met)是合成主要生物甲基化剂S-腺苷甲硫氨酸(AdoMet)所需的必需氨基酸。可以通过高半胱氨酸的再甲基化来补充用于AdoMet合成的蛋氨酸。备选地,高半胱氨酸可以通过转硫途径转化为半胱氨酸。蛋氨酸代谢异常与多种复杂疾病有关,包括癌症,贫血和神经退行性疾病。血液和器官中蛋氨酸的浓度受到严格调节。肝脏在缓冲血液蛋氨酸水平中起关键作用,其新陈代谢的一个有趣特征是存在平行的轨道,用于合成和利用AdoMet。为了阐明控制肝脏蛋氨酸代谢中代谢通量的分子机制,我们研究了生理相关浓度(40–400μM)下天然鼠肝细胞中AdoMet浓度和蛋氨酸消耗速率对蛋氨酸浓度的依赖性。我们发现,[AdoMet]和蛋氨酸的消耗率都不会随着[Met]的增加而逐渐变化,而是在从50μM到100μM的狭窄Met间隔中急剧上升(约10倍)。使用数学模型对我们的实验数据进行分析后发现,在触发区内观察到的[AdoMet]的急剧增加和蛋氨酸消耗速率与代谢途径有关,即从蛋氨酸保存向处置的代谢转换,通过平行途径之间的变构来调节。该调节开关由[Met]触发,并提供了一种机制,可以通过饮食中蛋氨酸摄入的广泛变化来稳定血液中蛋氨酸的水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号