...
首页> 外文期刊>Physical Review. Accelerators and Beams >Radiation damage and thermal shock response of carbon-fiber-reinforced materials to intense high-energy proton beams
【24h】

Radiation damage and thermal shock response of carbon-fiber-reinforced materials to intense high-energy proton beams

机译:碳纤维增强材料对强高能质子束的辐射损伤和热冲击响应

获取原文
           

摘要

A comprehensive study on the effects of energetic protons on carbon-fiber composites and compounds under consideration for use as low-Z pion production targets in future high-power accelerators and low-impedance collimating elements for intercepting TeV-level protons at the Large Hadron Collider has been undertaken addressing two key areas, namely, thermal shock absorption and resistance to irradiation damage. Carbon-fiber composites of various fiber weaves have been widely used in aerospace industries due to their unique combination of high temperature stability, low density, and high strength. The performance of carbon-carbon composites and compounds under intense proton beams and long-term irradiation have been studied in a series of experiments and compared with the performance of graphite. The 24-GeV proton beam experiments confirmed the inherent ability of a 3D C/C fiber composite to withstand a thermal shock. A series of irradiation damage campaigns explored the response of different C/C structures as a function of the proton fluence and irradiating environment. Radiolytic oxidation resulting from the interaction of oxygen molecules, the result of beam-induced radiolysis encountered during some of the irradiation campaigns, with carbon atoms during irradiation with the presence of a water coolant emerged as a dominant contributor to the observed structural integrity loss at proton fluences $ensuremath{ge}5ifmmodeimeselseexttimesi{}{10}^{20}ext{ }ext{ }mathrm{p}/{mathrm{cm}}^{2}$. The carbon-fiber composites were shown to exhibit significant anisotropy in their dimensional stability driven by the fiber weave and the microstructural behavior of the fiber and carbon matrix accompanied by the presence of manufacturing porosity and defects. Carbon-fiber-reinforced molybdenum-graphite compounds (MoGRCF) selected for their impedance properties in the Large Hadron Collider beam collimation exhibited significant decrease in postirradiation load-displacement behavior even after low dose levels ($ensuremath{sim}5ifmmodeimeselseexttimesi{}{10}^{18}ext{ }ext{ }mathrm{p}ext{ }{mathrm{cm}}^{ensuremath{-}2}$). In addition, the studied MoGRCF compound grade suffered a high degree of structural degradation while being irradiated in a vacuum after a fluence $ensuremath{sim}5ifmmodeimeselseexttimesi{}{10}^{20}ext{ }ext{ }mathrm{p}ext{ }{mathrm{cm}}^{ensuremath{-}2}$. Finally, x-ray diffraction studies on irradiated C/C composites and a carbon-fiber-reinforced Mo-graphite compound revealed (a) low graphitization in the ``as-received'' 3D C/C and high graphitization in the MoGRCF compound, (b) irradiation-induced graphitization of the least crystallized phases in the carbon fibers of the 2D and 3D C/C composites, (c) increased interplanar distances along the $c$ axis of the graphite crystal with increasing fluence, and (d) coalescence of interstitial clusters after irradiation forming new crystalline planes between basal planes and excellent agreement with fast neutron irradiation effects.
机译:对高能质子对碳纤维复合材料和化合物的影响的综合研究,这些碳纤维复合材料和化合物正在考虑用作未来大功率加速器和低阻抗准直元件的低Z离子生产目标,以便在大型强子对撞机中拦截TeV级质子已经针对两个关键领域进行了研究,即吸收热冲击和抵抗辐射破坏。由于各种纤维编织的碳纤维复合材料具有高温稳定性,低密度和高强度的独特组合,因此已广泛用于航空航天工业。通过一系列实验研究了碳-碳复合材料和化合物在强质子束和长期辐照下的性能,并与石墨的性能进行了比较。 24-GeV质子束实验证实了3D C / C纤维复合材料承受热冲击的固有能力。一系列的辐射破坏活动探索了不同C / C结构作为质子注量和辐射环境的函数的响应。由氧分子的相互作用引起的辐射氧化,这是在某些辐照运动过程中遇到的束诱导辐照分解的结果,在存在水冷却剂的辐照过程中,碳原子成为观察到的质子结构完整性损失的主要因素。通量$ ensuremath { ge} 5 ifmmode times else texttimes fi {} {10} ^ {20} text {} text {} mathrm {p} / { mathrm {cm}} ^ {2}美元。碳纤维复合材料在尺寸稳定性方面表现出显着的各向异性,这是由纤维编织,纤维和碳基体的微观结构行为以及制造孔隙和缺陷共同驱动的。在大强子对撞机光束准直中因其阻抗特性而选择的碳纤维增强钼石墨化合物(MoGRCF)即使在低剂量水平后,辐照后的载荷-位移行为也显着降低($ ensuremath { sim} 5 ifmmode times else texttimes fi {} {10} ^ {18} text {} text {} mathrm {p} text {} { mathrm {cm}} ^ { ensuremath {-} 2} $ )。此外,所研究的MoGRCF复合材料等级在通量$ ensuremath { sim} 5 ifmmode times else texttimes fi {} {10} ^ {20之后,在真空中辐照时遭受了高度的结构降解。 } text {} text {} mathrm {p} text {} { mathrm {cm}} ^ { ensuremath {-} 2} $。最后,对辐照的C / C复合材料和碳纤维增强的Mo-石墨化合物的X射线衍射研究表明(a)``按原样''3D C / C中的石墨化程度低,而MoGRCF化合物中的石墨化程度高,(b)2D和3D C / C复合材料碳纤维中最小结晶相的辐射诱导石墨化,(c)沿着通量增加,沿着石墨晶体$ c $轴的晶面间距增加,和(d )辐照后间隙簇的聚结,在基面之间形成新的晶面,并与快速中子辐照效果极佳地吻合。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号