...
首页> 外文期刊>PCI journal >High-strength self-consolidating concrete girders subjected to elevated compressive fiber stresses, part 2: Structural behavior
【24h】

High-strength self-consolidating concrete girders subjected to elevated compressive fiber stresses, part 2: Structural behavior

机译:高强度自固结混凝土梁承受较高的压缩纤维应力,第2部分:结构性能

获取原文
           

摘要

>The design of prestressed concrete members is restricted by the requirement that the extreme compressive fiber stress at midspan be less than 60% of the concrete compressive strength at release of prestressing. Thepurported purpose of this limit is to provide serviceability performance, but it places unnecessary limits on the capability of the materials. For this research program, six prestressed concrete girders were produced with high-strength, self-consolidating concrete and subjected to elevated compressive fiber stress levels ranging from 65% to 84% of initial concrete compressive strength at release of prestressing. Part 1 of this series analyzed time-dependent prestress losses and camber behavior and compared these values with the results from typical prediction methods. This second part examines the flexural and shear behavior of the same girders. The results of structural testing indicated little reduction in flexural capacity of girders subjected to elevated stress levels, but further testing in shear is needed to reduce the variability in the results. The results reported here suggest that an increase in the allowable compressive stress limit up to at least 70% of the initial concrete compressive strength at release of prestressing at any location is feasible.>References>1. Brewe, J., and J. J. Myers. 2010. target="_blank" title="High-Strength Self-Consolidating Concrete Girders Subjected to Elevated Compressive Fiber Stresses, Part 1: Prestress Loss and Camber Behavior." href="http://dx.doi.org/10.15554/pcij.09012010.59.77 ">High-Strength Self-Consolidating Concrete Girders Subjected to Elevated Compressive Fiber Stresses, Part 1: Prestress Loss and Camber Behavior. PCI Journal, V.  55, No. 4 (Fall): pp. 59-77. >2. Liniers, A. D. 1987. target="_blank" title="Microcracking of Concrete under Compression and Its Influence on Tensile Strength" href="http://dx.doi.org/10.1007/bf02472746 ">Microcracking of Concrete under Compression and Its Influence on Tensile Strength. Materials and Structures, V. 20, No. 116 (March): pp. 111-116. >3. Smadi, M. M., and F. O. Slate. 1989.target="_blank" title=" Microcracking of High and Normal Strength Concretes under Short- and Long-Term Loadings. " href="http://dx.doi.org/10.14359/2264 "> Microcracking of High and Normal Strength Concretes under Short- and Long-Term Loadings. ACI Materials Journal, V. 86, No. 2 (March-April): pp. 117-127. >4. Birrcher, D. B., R. G. Tuchscherer, D. Mraz, A. Castro, O. Bayrak, and M. E. Kreger. 2006. Effects of Increasing the Allowable Compressive Release Stress of Pretensioned Girders. In The PCI  National Bridge Conference: Proceedings, October 23-25, 2006, Grapevine, Texas. CD-ROM. >5. American Association of State Highway and Transportation Officials (AASHTO). 2007. AASHTO LRFD Bridge Design Specifications. 4th ed. Washington, DC: AASHTO. >6. ACI Committee 318. 2005. Building Code Requirements for Structural Concrete (ACI 318-05) and  Commentary (ACI 318R-05). Farmington Hills, MI: American Concrete Institute (ACI).>7. PCI Industry Handbook Committee. 2004. PCI Design Handbook: Precast and Prestressed Concrete. 6th ed.  Chicago, IL: PCI. >8. target="_blank" title="ASTM A416" href=" http://dx.doi.org/10.1520/a0416_a0416m-10 ">ASTM A416. Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete. West  Conshohocken, PA: ASTM International.>9. target="_blank" title="ASTM A615" href="http://dx.doi.org/10.1520/a0615_a0615m-09 ">ASTM A615. Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. West Conshohocken, PA: ASTM International.>10. Collins, M. P., and D. Mitchell. 1991. Prestressed Concrete Structures.  Prentice-Hall Inc. >11. American Association of State Highway and Transportation Officials (AASHTO). AASHTO LRFD Bridge Design Specifications-2
机译:>预应力混凝土构件的设计受到以下限制:中跨的极端抗压纤维应力应小于预应力释放时混凝土抗压强度的60%。此限制的主要目的是提供可维修性,但对材料的性能施加不必要的限制。对于该研究计划,生产了六种采用高强度,自固结混凝土的预应力混凝土梁,这些预应力混凝土梁在释放预应力时承受的压缩纤维应力水平介于初始混凝土抗压强度的65%至84%之间。本系列的第1部分分析了随时间变化的预应力损失和外倾特性,并将这些值与典型预测方法的结果进行了比较。第二部分检查了相同大梁的弯曲和剪切行为。结构测试的结果表明,承受高应力水平的大梁的抗弯能力几乎没有降低,但是还需要进一步进行剪切测试以减小结果的变化。此处报告的结果表明,在任何位置释放预应力时,允许的压缩应力极限至少增加至初始混凝土抗压强度的至少70%是可行的。 >参考文献 > 1。 Brewe,J.和J. J. Myers。 “。2010年。target =” _ blank“ title =”承受高压缩纤维应力的高强度自固结混凝土梁,第1部分:预应力损失和拱形行为。“ href =“ http://dx.doi.org/10.15554/pcij.09012010.59.77”>承受高压缩纤维应力的高强度自固结混凝土梁,第1部分:预应力损失和弯度特性。 PCI Journal,V.55,No.4(Fall):第59-77页。 > 2。 Liniers,公元1987年。在压缩状态下的混凝土微裂纹及其对拉伸强度的影响。材料与结构,第20卷,第116期(3月):第111-116页。 > 3。 Smadi,M。M.和F. O. Slate。 1989. target="_blank" title="短期和长期荷载下高强度和普通强度混凝土的微裂纹。“href="http://dx.doi.org/10.14359/2264 ">高强度的微裂纹短期和长期荷载下的混凝土和普通强度混凝土。 ACI材料杂志,第86卷,第2期(3月至4月):第117-127页。 > 4。 Birrcher,D.B.,R.G。Tuchscherer,D.Mraz,A.Castro,O.Bayrak和M.E.Kreger。 2006。增加预应力大梁的允许压缩释放应力的影响。在2006年10月23日至25日在得克萨斯州格雷普韦恩举行的PCI国家桥梁会议:会议记录中。光盘。 > 5。美国国家公路和运输官员协会(AASHTO)。 2007。AASHTOLRFD桥设计规范。第四版。华盛顿特区:AASHTO。 > 6。 ACI委员会318.2005。《结构混凝土的建筑规范要求》(ACI 318-05)和评注(ACI 318R-05)。密歇根州法明顿希尔斯:美国混凝土学会(ACI)。 > 7。 PCI行业手册委员会。 2004年。《 PCI设计手册:预制和预应力混凝土》。第六版。伊利诺伊州芝加哥:PCI。 > 8。 target="_blank" title="ASTM A416" href=" http://dx.doi.org/10.1520/a0416_a0416m-10 "> ASTM A416 。钢绞线,预应力混凝土的无涂层七线标准规范。宾夕法尼亚州West Conshohocken:ASTM International。 > 9。 target="_blank" title="ASTM A615" href="http://dx.doi.org/10.1520/a0615_a0615m-09 "> ASTM A615 。钢筋混凝土的变形和普通碳素钢棒的标准规范。宾夕法尼亚州West Conshohocken:ASTM International。 > 10。 Collins,M. P.和D. Mitchell。 1991年。预应力混凝土结构。 Prentice-Hall Inc. > 11。美国国家公路和运输官员协会(AASHTO)。 AASHTO LRFD桥梁设计规范2

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号