The maximum lengths for simple-span pretensioned concrete composite girders using high strength lightweight concrete (HSLWC) were investigated analytically using concrete st'/> Lightweight Concrete Reduces Weight and Increases Span Length of Pretensioned Concrete Bridge Girders
首页> 外文期刊>PCI journal >Lightweight Concrete Reduces Weight and Increases Span Length of Pretensioned Concrete Bridge Girders
【24h】

Lightweight Concrete Reduces Weight and Increases Span Length of Pretensioned Concrete Bridge Girders

机译:轻质混凝土减轻了重量并增加了预应力混凝土桥梁的跨度

获取原文
       

摘要

style="text-align: left;">The maximum lengths for simple-span pretensioned concrete composite girders using high strength lightweight concrete (HSLWC) were investigated analytically using concrete strengths of 8, 10, and 12  si (55, 69, and 83 MPa) and prestressing strands of 0.6 in. (15.2 mm) diameter. The use of HSLWC produced spans up to 4 percent longer than the same section made with high strength normal weight concrete (HSNWC). Based on the AASHTO I-girder and AASHTO PCI bulb-tee sections examined in this study, the reduced girder weight eliminated the need for special transportation a€?superloada€? permits. Modified AASHTO-PCI bulb-tees with one extra row of strands in the bottom flange extended the girdersa€? maximum span length by at least 10 ft (3.1 m). In all cases, the use of  lightweight concrete caused greater girder deflections, but all of these values were within the AASHTO specified limit of L/800. Overall, the advantages of lightweight concrete with compressive strengths up to 12 ksi (83 MPa) include lower girder weight, relief from special permitting requirements, and longer span lengths.>References style="text-align: left;">1. Kahn, Lawrence F., and Saber, Aziz,target="_blank" title=" a€?Analysis and Structural Benefits of High Performance Concrete for Pretensioned Bridge Girders,a€? " href="http://dx.doi.org/10.15554/pcij.07012000.100.107 "> a€?Analysis and Structural Benefits of High Performance Concrete for Pretensioned Bridge Girders,a€? PCI JOURNAL, V. 45, No. 4, July-August 2000, pp. 100-107.  style="text-align: left;">2. Harmon, Kenneth S., a€?Physical Characteristics of Rotary Kiln Expanded Slate Lightweight Aggregate,a€? Second International Symposium on Structural Lightweight Concrete, Sandefjord, Norway,   June 2000, pp. 574-583. style="text-align: left;">3. Holm, Thomas A., and Bremner, T.W., Chapter 10 of High Peiformance Concretes and Applications, S.P. Shah and S.H. Ahmad (Editors), Edward Arnold, London, 1994, Pp. 341-374. style="text-align: left;">4. Leming, Michael L., a€?Properties of High Strength Concrete - An Investigation of High Strength Concrete Characteristics Using Materials in North Carolina,a€? North Carolina State University Report  for NCDOT and FHWA, No. 23241-86-3,  Raleigh, NC, 1988, 186 pp. style="text-align: left;">5. Shideler, J. J., target="_blank" title="a€?Lightweight-Aggregate Concrete for Structural  Use,a€?" href="http://dx.doi.org/10.14359/11441 ">a€?Lightweight-Aggregate Concrete for Structural  Use,a€?ACI Journal, V. 29, No.4, October 1957, pp. 299-328. style="text-align: left;">6. Meyer, Karl F., and Kahn, Lawrence F., a€?Annotated Bibliography for High Strength Lightweight Prestressed Concrete,a€? Report to the Office of Materials and Research, Georgia Department of   Transportation, Atlanta, GA, January 2001, 12pp. style="text-align: left;">7. AASHTO, Standard Specifications for Highway Bridges, 16th Edition, American Association of State Highway and Transportation Officials, Washington, DC, 1996. style="text-align: left;"> 8. Bilodeau, Alain, Chevrier, Raymond, Malhotra, Mohan, and Hoff, George C., a€?Mechanical Properties, Durability and Fire  Resistance of High Strength Lightweight Concrete,a€? International   Symposium on Structural Lightweight Aggregate Concrete, Sandefjord, Norway, June 1995, pp. 432-443. style="text-align: left;">9. Brown, William R., and Davis, C.R., a€?A Load Response Investigation of Long Term Performance of a Prestressed Lightweight Concrete Bridge at Fanning Springs, Florida,a€? State Project Number  30010-3507, FY 1962, Florida Department of Transportation, 1962, Tallahassee, FL, 66 pp. style="text-align: left;">10. Fdd??ration Internationale de la Prdcontrainte (FTP), Manual of  Lightweight Aggregate Concrete, Second Edition, John Wiley & Sons, New Yo
机译:style =“ text-align:left;”>使用高强度轻质混凝土(HSLWC)的简单跨度预张混凝土复合大梁的最大长度通过分析得出的混凝土强度分别为8、10和12 si(55,69和83 MPa)和直径为0.6英寸(15.2毫米)的预应力绞线。与使用高强度普通重量混凝土(HSNWC)制成的相同型材相比,使用HSLWC生产的跨度最多可延长4%。根据本研究中研究的AASHTO工字梁和AASHTO PCI球型T形截面,减少的梁重消除了特殊运输和超载的需要。许可证。修改后的AASHTO-PCI灯泡T形接头在底部法兰中额外增加了一排股线,从而扩展了大梁。最大跨度至少为10英尺(3.1 m)。在所有情况下,使用轻质混凝土都会引起较大的梁变形,但所有这些值均在AASHTO指定的L / 800限制内。总体而言,抗压强度高达12 ksi(83 MPa)的轻质混凝土的优点包括更低的梁重,免除特殊许可要求和更长的跨度。 >参考 style = “ text-align:left;”> 1。 Kahn,Lawrence F.和Saber,Aziz,target =“ _ blank” title =“ a高性能预应力桥梁梁混凝土的分析和结构优点,a”“ href =” http:// dx。 doi.org/10.15554/pcij.07012000.100.107“>“用于预张桥梁的高性能混凝土的分析和结构优势”,a? PCI Journal,第45卷,第4期,2000年7月至8月,第100-107页。 style =“ text-align:left;”> 2.。 Kenneth S. Harmon,回转窑膨胀板岩轻质骨料的物理特性,a第二届国际轻质混凝土结构研讨会,2000年6月,挪威,桑德菲尤尔,第574-583页。 style =“ text-align:left;”> 3。霍姆(Thomas A.)和布雷姆纳(T.W.),《高性能混凝土及其应用》第10章,S.P。Shah和S.H.艾哈迈德(编辑),爱德华·阿诺德(Edward Arnold),伦敦,1994年,页。 341-374。 style =“ text-align:left;”> 4。 Leming,Michael L.,“高强度混凝土的特性-使用北卡罗来纳州材料对高强度混凝土特性进行的研究”。 《北卡罗莱纳州立大学关于NCDOT和FHWA的报告》,第23241-86-3号,北卡罗来纳州罗利市,1988年,186页。 style =“ text-align:left;”> 5。 Shideler,J. J。,target =“ _ blank” title =“ a?用于结构的轻质骨料混凝土,a?” href =“ http://dx.doi.org/10.14359/11441”> a?用于结构用途的轻骨料混凝土,a? ACI杂志,第29卷,第4期,1957年, 299-328页。 style =“ text-align:left;”> 6。 Meyer,Karl F.和Kahn,Lawrence F.,“高强度轻型预应力混凝土的带注释书目”,a。向佐治亚州佐治亚州运输局材料与研究办公室的报告,2001年1月,第12页。 style =“ text-align:left;”> 7。 AASHTO,《公路桥梁标准规范》,第16版,美国国家公路和运输官员协会,华盛顿特区,1996年。 style =“ text-align:left;”> 8. Bilodeau,Alain,Chevrier ,Raymond,Malhotra,Mohan和Hoff,George C.,《高强度轻质混凝土的机械性能,耐久性和耐火性》, 1995年6月在挪威Sandefjord举行的国际结构轻骨料混凝土专题讨论会,第432-443页。 style =“ text-align:left;”> 9。 Brown,William R.和Davis,C.R. –佛罗里达Fanning Springs的预应力轻型混凝土桥梁长期性能的荷载响应研究。州项目编号30010-3507,1962财政年度,佛罗里达州交通运输部,1962,佛罗里达州塔拉哈西,66页。 style =“ text-align:left;”> 10。 Fdd ?? ration Internationale de la Prdcontrainte(FTP),《轻集料混凝土手册》,第二版,John Wiley&Sons,New Yo

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号