...
首页> 外文期刊>Stem Cell Reports >Alternative Routes to Induced Pluripotent Stem Cells Revealed by Reprogramming of the Neural Lineage
【24h】

Alternative Routes to Induced Pluripotent Stem Cells Revealed by Reprogramming of the Neural Lineage

机译:通过重新编程神经谱系揭示了诱导多能干细胞的替代途径

获取原文

摘要

Highlights ? NANOG expression can be obtained without E-cadherin in cells of the neural lineage ? Transgene independence and late markers only occur when colonies are E-cadherin+ ? NANOG+E-cadherin+ colonies also upregulate cell cycle-related genes ? DOT1L inhibition increases NANOG+E-cadherin+ colony numbers Summary During the reprogramming of mouse embryonic fibroblasts (MEFs) to induced pluripotent stem cells, the activation of pluripotency genes such as NANOG occurs after the mesenchymal to epithelial transition. Here we report that both adult stem cells (neural stem cells) and differentiated cells (astrocytes) of the neural lineage can activate NANOG in the absence of cadherin expression during reprogramming. Gene expression analysis revealed that only the NANOG+E-cadherin+ populations expressed stabilization markers, had upregulated several cell cycle genes; and were transgene independent. Inhibition of DOT1L activity enhanced both the numbers of NANOG+ and NANOG+E-cadherin+ colonies in neural stem cells. Expressing SOX2 in MEFs prior to reprogramming did not alter the ratio of NANOG colonies that express E-cadherin. Taken together these results provide a unique pathway for reprogramming taken by cells of the neural lineage. prs.rt("abs_end"); Introduction Overexpression of the four transcription factors, Oct4, Sox2, Klf4 , and c-Myc (OSKM) is sufficient to reprogram somatic cells into induced pluripotent cells (iPSCs) ( Jackson and Sridharan, 2013 ). The mechanism of reprogramming is incompletely elucidated due to the inefficiency of the process with about 5% of the cells reaching the iPSC state under standard serum or serum replacement culture conditions ( Papp and Plath, 2013 ). While a variety of somatic cells have been used as a starting point for the reprogramming process ( Hussein and Nagy, 2012 ), mechanistic studies have been largely limited to those using mouse embryonic fibroblasts (MEFs). Tracking reprogramming populations has delineated a series of events that take place in a timed manner such as the loss of somatic cell gene expression followed by mesenchymal to epithelial transition (MET) indicated primarily by the acquisition of the cell surface marker E-cadherin ( Samavarchi-Tehrani et?al., 2010 and Li et?al., 2010 ). This is followed by the gain of expression of pluripotency markers such as OCT4 and NANOG, by the appearance of stabilization markers such as DPPA4, and independence from exogenous reprogramming factor expression ( Apostolou and Hochedlinger, 2013 ). Overlaid on these transitions, experiments on single cells have revealed an early stochastic phase of gene expression followed by a late hierarchical phase triggered by the activation of Sox2 ( Buganim et?al., 2012 ). Therefore, we were interested in determining if cells?that expressed endogenous SOX2 followed the same pathway as MEFs and focused on reprogramming both adult stem cells (neural stem cells [NSCs]) and differentiated cells (astrocytes) from the neural lineage. Both human and mouse NSCs can be reprogrammed with the omission of exogenous Sox2 in the reprogramming cocktail ( Kim et?al., 2008 ), and can even be reprogrammed with Oct4 alone ( Kim et?al., 2009 ). NSCs can also be more readily reprogrammed to intermediate stages, called partially reprogrammed cells, than MEFs ( Silva et?al., 2008 ). Remarkably, we found that upon induction of reprograming, in both NSCs and astrocytes, NANOG expression preceded or was concomitant with E-cadherin expression and the expression of SSEA1, an intermediate marker of pluripotency. Abrogation of E-cadherin expression through shRNA-mediated knockdown reduces reprogramming efficiency from MEFs and compromises the quality of iPSCs obtained ( Chen et?al., 2010 ), while MEFs lacking E-cadherin cannot form Nanog+ colonies ( Redmer et?al., 2011 ). E-cadherin can also replace Oct4 in the reprogramming factor cocktail ( Redmer et?al., 2011 ). Truncations of E-cadherin in MEF reprogramming revealed the necessity of the extracellular domain ( Chen et?al., 2010 ). Interestingly, in the absence of E-cadherin in embryonic stem cells (ESCs), N-cadherin is able to functionally replace E-cadherin to maintain pluripotency ( Hawkins et?al., 2012 ). We found that Nanog+ colonies from NSC reprogramming cultures can have N-cadherin, E-cadherin, or neither cadherin. However, colonies that expressed stabilization markers ( Golipour et?al., 2012 ), such as Dppa4 , and that were transgene independent always co-expressed NANOG and E-cadherin. Gene expression analysis of populations sorted for expressing NANOG alone (N+) or NANOG and E-cadherin (N+E+) revealed that the N+E+ population expressed higher levels of cell cycle genes suggesting a greater propensity to expand. Finally, enhancing MET by inhibiting the histone methyltransferase, DOT1l ( Onder et?al., 2012 ) increased both N+ and N+E+ colony numbers. Results Nanog+ Colonies Emerge in Reprogramming in the Absence of E-Cadherin or SSEA1 Expression W
机译:强调 ?在神经谱系细胞中,没有E-钙粘着蛋白就可以获得NANOG表达。仅当菌落为E-cadherin +时才发生转基因独立性和后期标记。 NANOG + E-cadherin +集落也上调与细胞周期相关的基因? DOT1L抑制作用增加了NANOG + E-cadherin +菌落的数量摘要在将小鼠胚胎成纤维细胞(MEF)重编程为诱导性多能干细胞的过程中,多能性基因(如NANOG)的活化发生在间质向上皮转化之后。在这里,我们报道在重新编程过程中,在没有钙黏着蛋白表达的情况下,神经谱系的成年干细胞(神经干细胞)和分化细胞(星形细胞)都可以激活NANOG。基因表达分析表明,只有NANOG + E-cadherin +群体表达稳定标记,上调了多个细胞周期基因。并且是转基因独立的。抑制DOT1L活性可增强神经干细胞中NANOG +和NANOG + E-cadherin +菌落的数量。重编程之前在MEF中表达SOX2不会改变表达E-钙粘蛋白的NANOG菌落的比例。总之,这些结果为神经谱系细胞采取的重新编程提供了独特的途径。 prs.rt(“ abs_end”);简介四个转录因子Oct4,Sox2,Klf4和c-Myc(OSKM)的过表达足以将体细胞重编程为诱导性多能细胞(iPSC)(Jackson和Sridharan,2013年)。由于在标准血清或血清替代培养条件下约5%的细胞达到iPSC状态的过程效率低下,因此未完全阐明重编程的机制(Papp和Plath,2013年)。虽然各种各样的体细胞已被用作重编程过程的起点(Hussein和Nagy,2012年),但机理研究在很大程度上仅限于使用小鼠胚胎成纤维细胞(MEF)的那些。跟踪重编程人群已经描述了一系列以定时方式发生的事件,例如体细胞基因表达的丧失,继而由间质向上皮的转化(MET),主要是通过获得细胞表面标志物E-钙黏着蛋白(Samavarchi- Tehrani等,2010和Li等,2010)。其次是多能性标志物(如OCT4和NANOG)表达的增加,稳定标志物(如DPPA4)的出现以及与外源重编程因子表达的独立性(Apostolou和Hochedlinger,2013)。在这些转变之上,对单细胞的实验揭示了基因表达的早期随机阶段,随后是由Sox2激活触发的晚期分层阶段(Buganim等,2012)。因此,我们感兴趣的是确定表达内源性SOX2的细胞是否遵循与MEF相同的途径,并专注于从神经谱系中重新编程成年干细胞(神经干细胞[NSC])和分化细胞(星形细胞)。人和小鼠NSC都可以在重编程混合物中省略外源Sox2进行重编程(Kim等人,2008年),甚至可以单独用Oct4进行重编程(Kim等人,2009年)。与MEFs相比,NSCs还可以更容易地重编程为中间阶段,称为部分重编程细胞(Silva等,2008)。值得注意的是,我们发现在NSCs和星形胶质细胞中,在重编程诱导后,NANOG表达先于或伴有E-钙粘蛋白表达和多能性的中间标志物SSEA1的表达。通过shRNA介导的敲除来废除E-钙粘蛋白的表达会降低来自MEF的重编程效率并损害获得的iPSC的质量(Chen等人,2010年),而缺乏E-钙粘蛋白的MEF不能形成Nanog +菌落(Redmer等人, 2011)。 E-钙粘蛋白还可以在重编程因子鸡尾酒中替代Oct4(Redmer等人,2011年)。 E-钙粘着蛋白在MEF重编程中的截断揭示了胞外域的必要性(Chen et al。,2010)。有趣的是,在胚胎干细胞(ESC)中不存在E-钙粘着蛋白的情况下,N-钙粘着蛋白能够在功能上替代E-钙粘着蛋白以维持多能性(Hawkins等人,2012)。我们发现,来自NSC重编程培养的Nanog +菌落可以具有N-钙粘着蛋白,E-钙粘着蛋白,也可以不含钙粘着蛋白。但是,表达稳定标记的菌落(Golipour等人,2012),例如Dppa4,并且是转基因独立的,总是共表达NANOG和E-cadherin。对仅表达NANOG(N +)或NANOG和E-cadherin(N + E +)进行分类的种群的基因表达分析表明,N + E +种群表达较高水平的细胞周期基因,表明其扩展倾向更大。最后,通过抑制组蛋白甲基转移酶DOT11来增强MET(Onder等人,2012),同时增加了N +和N + E +菌落数。结果在没有E-钙黏着蛋白或SSEA1表达W的情况下,Nanog +集落出现重新编程

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号