...
首页> 外文期刊>Solid Earth >Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography
【24h】

Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography

机译:上地幔非均质性对岩石圈应力场和动态地形的影响

获取原文

摘要

The orientation and tectonic regime of the observed crustal/lithospheric stress field contribute to our knowledge of different deformation processes occurring within the Earth's crust and lithosphere. In this study, we analyze the influence of the thermal and density structure of the upper mantle on the lithospheric stress field and topography. We use a 3-D lithosphere–asthenosphere numerical model with power-law rheology, coupled to a spectral mantle flow code at 300km depth. Our results are validated against the World Stress Map 2016 (WSM2016) and the observation-based residual topography. We derive the upper mantle thermal structure from either a heat flow model combined with a seafloor age model (TM1) or a global S-wave velocity model (TM2). We show that lateral density heterogeneities in the upper 300km have a limited influence on the modeled horizontal stress field as opposed to the resulting dynamic topography that appears more sensitive to such heterogeneities. The modeled stress field directions, using only the mantle heterogeneities below 300km, are not perturbed much when the effects of lithosphere and crust above 300km are added. In contrast, modeled stress magnitudes and dynamic topography are to a greater extent controlled by the upper mantle density structure. After correction for the chemical depletion of continents, the TM2 model leads to a much better fit with the observed residual topography giving a good correlation of 0.51 in continents, but this correction leads to no significant improvement of the fit between the WSM2016 and the resulting lithosphere stresses. In continental regions with abundant heat flow data, TM1 results in relatively small angular misfits. For example, in western Europe the misfit between the modeled and observation-based stress is 18.3°. Our findings emphasize that the relative contributions coming from shallow and deep mantle dynamic forces are quite different for the lithospheric stress field and dynamic topography.
机译:观测到的地壳/岩石圈应力场的方向和构造形态有助于我们了解地壳和岩石圈内发生的不同变形过程。在这项研究中,我们分析了上地幔的热和密度结构对岩石圈应力场和地形的影响。我们使用具有幂律流变学的3-D岩石圈-软流圈数值模型,并耦合到300 km深度的光谱地幔流代码。我们的结果已根据《 2016年世界应力图》(WSM2016)和基于观测的残余地形进行了验证。我们从结合海床年龄模型(TM1)的热流模型或整体S波速度模型(TM2)得出上地幔热结构。我们表明,在300 km的上部,横向密度异质性对模拟的水平应力场的影响有限,这与所产生的动态形貌相对于这种异质性更为敏感。当仅添加300 km以下的岩石圈和地壳的影响时,仅使用300 km以下的地幔非均质性建模的应力场方向不会受到太大干扰。相反,建模应力大小和动态形貌在很大程度上受上地幔密度结构控制。校正了大陆的化学耗竭之后,TM2模型导致与观测到的残余地形的拟合度更高,从而使各大陆的相关性良好,为0.51,但这种校正并未导致WSM2016与由此产生的岩石圈之间的拟合度有显着改善压力。在热流量数据丰富的大陆地区,TM1导致相对较小的角度失配。例如,在西欧,模拟应力和基于观测的应力之间的失配为18.3°。我们的发现强调,对于岩石圈应力场和动态地形,浅层和深层地幔动力的相对贡献是完全不同的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号