首页> 外文期刊>Soils and foundations >STRENGTH DEVELOPMENT IN CEMENT STABILIZED LOW PLASTICITY AND COARSE GRAINED SOILS: LABORATORY AND FIELD STUDY
【24h】

STRENGTH DEVELOPMENT IN CEMENT STABILIZED LOW PLASTICITY AND COARSE GRAINED SOILS: LABORATORY AND FIELD STUDY

机译:水泥稳定的低塑性和粗粒土的强度发展:实验室和现场研究

获取原文
           

摘要

References(24) Cited-By(1) Laboratory and field strength development of cement stabilized coarse-grained soils are studied in this paper. A phenomenological model to assess the laboratory strength development is developed. The model is divided into the dry and the wet sides of optimum water content. At the optimum and on the wet side of optimum, the strength development in cement stabilized soils at a particular curing time is dependent only upon the soil-water/cement ratio, w/C, which can reflect the combined effects of water content and cement content. It is moreover premised that the relationship between strength and water content is symmetrical around the optimum water content (OWC) in the range of 0.8 to 1.2 times the OWC. The proposed model is useful for assessing the strength development wherein water content, cement content and compaction energy vary over a wide range. Only the test result of a single laboratory trial is needed. From the field study, it is found that the field roller-compacted strength, qufr is lower than the laboratory strength, qul under the same dry unit weight, soil-water/cement ratio and curing time due to several field factors. The ratio qufr/qul varies from 50 to 100%. Non-uniformity in mixing soil with cement is realized by the ratio of field hand-compacted strength to laboratory strength, qufh/qul ranging from 0.75 to 1.2. For most data, the field roller-compacted strength is 55 to 100% the field hand-compacted strength. This might be caused by the difference in compaction method and curing condition between laboratory and field stabilization. From this field observation and the proposed model, a practical procedure for repairing damaged roads using the pavement recycling technique is introduced. The procedure consists of the determination of cement content, the execution of the field stabilization and the examination of the field strength. It can save on sampling and laboratory testing and hence cost.
机译:参考文献(24)(1)研究了水泥稳定的粗粒土的实验室和场强发展情况。建立了评估实验室实力发展的现象学模型。该模型分为最佳含水量的干湿两面。在最佳状态和最佳状态的湿润方面,水泥稳定土壤在特定固化时间的强度发展仅取决于土壤水灰比w / C,它可以反映出水含量和水泥的综合作用内容。此外,前提是强度和含水量之间的关系在最佳含水量(OWC)在OWC的0.8到1.2倍的范围内对称。提出的模型可用于评估强度发展,其中水含量,水泥含量和压实能量在很大范围内变化。仅需要单个实验室试验的测试结果。从田间研究发现,在相同的干燥单位重量,土壤水灰比和固化时间的情况下,由于多种田间因素,田间压路机压实强度qufr低于实验室强度qul。 qufr / qul的比率从50%到100%不等。土壤与水泥混合的不均匀性是通过现场手工压实强度与实验室强度之比qufh / qul的范围从0.75到1.2来实现的。对于大多数数据,压路机压实强度是手动压实强度的55%至100%。这可能是由于实验室和现场稳定之间的压实方法和固化条件不同而引起的。从现场观察和提出的模型出发,介绍了一种利用路面回收技术修复受损道路的实用程序。该程序包括确定水泥含量,执行场稳定和检查场强。它可以节省采样和实验室测试的费用,从而节省成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号