...
首页> 外文期刊>Soils >Microbial Population Dynamics and the Role of Sulfate Reducing Bacteria Genes in Stabilizing Pb, Zn, and Cd in the Terrestrial Subsurface
【24h】

Microbial Population Dynamics and the Role of Sulfate Reducing Bacteria Genes in Stabilizing Pb, Zn, and Cd in the Terrestrial Subsurface

机译:微生物种群动态和硫酸盐还原细菌基因在稳定地表下铅,锌和镉中的作用

获取原文

摘要

Milling and mining metal ores are major sources of toxic metals contamination. The Spring River and its tributaries in southeast Kansas are contaminated with Pb, Zn, and Cd because of 120 years of mining activities. Trace metal transformations and cycling in mine waste materials greatly influence their mobility and toxicity and they affect both plant productivity and human health. It has been hypothesized that under reduced conditions in sulfate-rich environments, these metals can be transformed into their sulfide forms, thus limiting mobility and toxicity. We studied biogeochemical transformations of Pb, Zn, and Cd in flooded subsurface mine waste materials, natural or treated with organic carbon (OC), and/or sulfur (S), by combining advanced microbiological and X-ray spectroscopic techniques to determine the effects of treatments on the microbial community structure and identify the dominant functional genes that are involved in the biogeochemical transformations, especially metal sulfide formation over time. Samples collected from medium-, and long-term submerged columns were used for microarray analysis via functional gene array (GeoChip 4.2). The total number of detected gene abundance decreased under long-term submergence, but major functional genes abundance was enhanced with OC-plus-S treatment. The microbial community exhibited a substantial change in structure in response to OC and S addition. Sulfate-reducing bacteria genes dsrA/B were identified as key players in metal sulfide formation via dissimilatory sulfate reduction. Uniqueness of this study is that microbial analyses presented here in detail are in agreement with molecular-scale synchrotron-based X-ray data, supporting that OC-plus-S treatment would be a promising strategy for reducing metal toxicity in mine waste materials in the subsurface environment.
机译:选矿和采矿金属矿石是有毒金属污染的主要来源。堪萨斯州东南部的Spring河及其支流由于120年的开采活动而被Pb,Zn和Cd污染。矿山废料中的痕量金属转化和循环会极大地影响其流动性和毒性,并影响植物的生产力和人类健康。假设在富含硫酸盐的环境中,在还原条件下,这些金属可以转化为硫化物形式,从而限制了迁移率和毒性。通过结合先进的微生物学和X射线光谱技术来确定影响,我们研究了天然或经有机碳(OC)和/或硫(S)处理的淹没地下矿山废料中Pb,Zn和Cd的生物地球化学转化对微生物群落结构的治疗方法进行鉴定,并确定参与生物地球化学转化的主要功能基因,尤其是随着时间的推移形成金属硫化物。从中,长期浸没柱中收集的样品通过功能基因阵列(GeoChip 4.2)用于微阵列分析。长期淹没后,检测到的基因丰度总数减少,但OC-plus-S处理可增强主要功能基因的丰度。微生物群落对OC和S的添加表现出结构上的重大变化。通过异化硫酸盐还原,还原硫酸盐的细菌基因dsrA / B被确定为金属硫化物形成的关键参与者。这项研究的独特之处在于,此处详细介绍的微生物分析与基于分子级同步加速器的X射线数据相吻合,支持OC-plus-S处理将是降低矿山废料中金属毒性的一种有前途的策略。地下环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号