首页> 外文期刊>ournal of the Meteorological Society of Japan >Numerical Simulation on Retrieval of Meso-γ Scale Precipitable Water Vapor Distribution with the Quasi-Zenith Satellite System (QZSS)
【24h】

Numerical Simulation on Retrieval of Meso-γ Scale Precipitable Water Vapor Distribution with the Quasi-Zenith Satellite System (QZSS)

机译:准天顶卫星系统(QZSS)反演中γ尺度可降水量水汽分布的数值模拟

获取原文
           

摘要

 A simulation study was conducted to investigate the retrieval of meso-γ scale precipitable water vapor (PWV) distribution with the Quasi-Zenith Satellite System (QZSS) using output from a non-hydrostatic model (JMA NHM). The evaluation was performed on PWV values obtained by simulating three different methods: using all GPS satellites above an elevation angle higher than 10° (PWVG) (conventional Global Navigation Satellite System (GNSS) meteorology method), using only the QZSS satellite at the highest elevation (PWVQ), and using only the GPS satellite at the highest elevation (PWVHG). The three methods were compared by assuming the vertically integrated water vapor amounts of the model as true PWV. As a result, the root mean square errors of PWVG, PWVQ, and PWVHG were 2.78, 0.13, and 0.59 mm, respectively, 5 min before the rainfall. The time series of PWVHG had a large discontinuity (˜ 2 mm) when the GPS satellite with the highest elevation changed, while that of PWVQ was small because the elevation at which the highest QZSS satellites change was much higher. The standard deviation of PWVQ was smaller than those of PWVG and PWVHG, which vary significantly depending on GPS satellite geometry. When the spatial distributions of PWVG and PWVQ were compared to the meso-γ scale distribution of the reference PWV, PWVG smoothed out the PWV fluctuations, whereas PWVQ captured them well, due to the higher spatial resolution achievable using only high-elevation slant paths. These results suggest that meso-γ scale water vapor fluctuations associated with a thunderstorm can be retrieved using a dense GNSS receiver network and analyzing PWV from a single high-elevation GNSS satellite. In this study, we focus on QZSS, since this constellation would be especially promising in this context, and it would provide nearly continuous PWV observations as its highest satellite changes, contrary to using the highest satellites from multiple GNSS constellations.
机译:进行了模拟研究,研究了使用非静水模型(JMA NHM)的输出通过准Zenith卫星系统(QZSS)检索中尺度γ级可沉淀水蒸气(PWV)分布的情况。评估是通过模拟三种不同方法获得的PWV值进行的:使用高于10°仰角的所有GPS卫星(PWVG)(常规全球导航卫星系统(GNSS)气象学方法),仅使用最高的QZSS卫星高度(PWVQ),并且仅使用最高海拔(PWVHG)的GPS卫星。通过将模型的垂直积分水蒸气量假定为真实PWV来比较这三种方法。结果,在降雨前5分钟,PWVG,PWVQ和PWVHG的均方根误差分别为2.78、0.13和0.59 mm。当具有最高海拔的GPS卫星发生变化时,PWVHG的时间序列具有较大的不连续性(约2 mm),而由于最高QZSS卫星发生变化的海拔高度更高,PWVQ的时间序列较小。 PWVQ的标准偏差小于PWVG和PWVHG的标准偏差,这取决于GPS卫星的几何形状。当将PWVG和PWVQ的空间分布与参考PWV的中观γ尺度分布进行比较时,PWVG可以平滑PWV波动,而PWVQ可以很好地捕获它们,这是因为仅使用高仰角的倾斜路径就可以实现更高的空间分辨率。这些结果表明,可以使用密集的GNSS接收器网络并从单个高海拔GNSS卫星分析PWV来检索与雷暴有关的中γ级水汽波动。在这项研究中,我们将重点放在QZSS上,因为这种星座在这种情况下特别有前途,并且它将提供几乎连续的PWV观测值作为其最高卫星变化,这与使用来自多个GNSS星座的最高卫星相反。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号