首页> 外文期刊>Online Journal of Public Health Informatics >Control and Cost-benefit Analysis of Fast Spreading Diseases: The case of Ebola
【24h】

Control and Cost-benefit Analysis of Fast Spreading Diseases: The case of Ebola

机译:快速传播疾病的控制和成本效益分析:埃博拉病毒病例

获取原文
           

摘要

Introduction Mitigating the spread of infectious disease is of great importance for policy makers. Taking the recent outbreak of Ebola as an example, it was difficult for policy makers to identify the best course of action based on the cost-effectiveness of what was available. In effort to address the needs of policy makers to mitigate the spread of infectious disease before an outbreak becomes uncontrollable, we have devised a cost-benefit disease control model to simulate the effect of various control methods on disease incidence and the cost associated with each of the scenarios. Here, we present a case study of Ebola used to quantify the cost effectiveness of vaccination and isolation methods to minimize the spread of the disease. We evaluate the impact of changing strategy levels on the incidence of the disease and address the benefits of choosing one strategy over the other with regards to cost of vaccine and isolation. Methods Disease. We use a general SEIRJ model for disease transmission. Here, S-Susceptible, E- Exposed (latent), I A a?? Infected (asymptomatic), I M a?? Infected (mild symptoms), I S a?? Infected (severe symptoms), J M a?? Isolated (mild symptoms at home), J S a?? Isolated (severe symptoms in hospital), and R- Recovered individuals. In this model, we consider the dynamics of the system and the effect of the relative transmissibility of isolated individuals (L) compared to other infected individuals 1 . Cost. Ebola vaccination and treatment are very expensive and not widely available. Some preliminary data shows that it will take $73 million (M) to produce 27 M vaccines 2 plus the cost for vaccine delivery and health care professionals (not included here). On the other hand, the treatment for Ebola in the U.S. would cost $25,000 dollars a day per person 3 to ensure proper isolation and adequate care (treatment, health care professionals, facilities and special equipment). Although not included in this research, the proper isolation of Ebola patients would also lead to a loss in hospital revenue of $148,000 per day due to reduced patient capacity 3 . Here, we use $27,000 per individual hospitalized per day and $2.70 per person vaccinated. Model. To evaluate the cost-effectiveness of control methods on disease transmission, we assessed the affect of different levels of vaccination coverage on the resulting number of infected individuals. Then, we calculated the overall estimated cost of vaccination and resulting hospitalization for each scenario to identify the lowest cost- benefit ratio. Results Using a base population of 10 M individuals, we ran scenarios for different levels of vaccination ( ?? = 0.01, 0.05, 0.1) while varying the relative transmissibility of isolated individuals (L = 0.5, 0.6, 0.65). For each combination, we calculated the incidence, vaccination and hospitalization cost per individual per day (Fig 1). We note that an increase in the relative transmissibility of isolated individuals leads to a higher number of infected people and, therefore, a reduced number of candidates for vaccination and an overall increase in cost. Since the cost of vaccination is 1 ten-thousandth of the cost of hospitalization, our results clearly show the cost-benefit of vaccinating over hospital treatment. In every scenario studied, we observed a measurable reduction in disease incidence when vaccinating a higher fraction of the population compared to isolating individuals post infection. Conclusions Given these preliminary results, we plan to extend the framework of our model to a dynamic control system where we consider the cost of vaccination and isolation embedded in the system of differential equations. This approach will allow us see the best available control implementation while minimizing the cost of treatment and vaccination. Keywords Control; Epidemiological Modeling; Transmission Dynamics; Cost; EBOLA References
机译:引言减轻传染病的传播对政策制定者至关重要。以最近的埃博拉疫情为例,决策者很难根据现有的成本效益来确定最佳的行动方案。为了满足决策者在爆发无法控制之前减轻传染病传播的需求,我们设计了一种成本效益的疾病控制模型,以模拟各种控制方法对疾病发病率的影响以及与每种疾病相关的成本场景。在这里,我们介绍了一个埃博拉病毒感染的案例研究,用于量化疫苗接种和隔离方法的成本效益,以最大程度地减少疾病的传播。我们评估了改变策略水平对疾病发生率的影响,并就疫苗和隔离的成本提出了选择一种策略而不是另一种策略的好处。方法疾病。我们使用一般的SEIRJ模型进行疾病传播。在这里,S易感,E暴露(潜伏),I a a ???感染(无症状),我是吗?感染(轻度症状),我是?感染(严重症状),J M a ??孤立(在家中症状较轻),J S a ???隔离(医院中的严重症状)和R-恢复的个体。在此模型中,我们考虑了系统的动力学以及与其他受感染个体相比1的孤立个体(L)的相对传播能力的影响。成本。埃博拉疫苗接种和治疗非常昂贵,无法广泛获得。一些初步数据显示,生产2700万种疫苗将花费7300万美元(M),加上疫苗交付和医疗保健专业人员的成本(此处未包括)。另一方面,在美国治疗埃博拉病毒的费用为每人每天25,000美元3,以确保适当的隔离和适当的护理(治疗,医疗保健专业人员,设施和专用设备)。尽管未包括在本研究中,但由于患者容量的减少3,正确隔离埃博拉患者也将导致每天医院收入损失148,000美元3。在这里,我们使用每人每天住院27,000美元和每人接种疫苗2.70美元。模型。为了评估控制方法对疾病传播的成本效益,我们评估了不同水平的疫苗接种覆盖率对最终感染人数的影响。然后,我们针对每种情况计算了疫苗接种的总体估计成本以及由此产生的住院费用,以确定最低的成本效益比。结果我们使用了1000万个基本人口,对不同水平的疫苗接种(Δε= 0.01、0.05、0.1)进行了模拟,同时改变了孤立个体的相对传播能力(L = 0.5、0.6、0.65)。对于每种组合,我们计算了每人每天的发病率,疫苗接种和住院费用(图1)。我们注意到,与世隔绝的个体的相对传播能力的增加导致感染人数的增加,因此减少了接种疫苗的候选人数量,并总体上增加了成本。由于接种疫苗的费用是住院费用的十分之一,因此我们的结果清楚地表明了接种疫苗胜过医院治疗的成本效益。在研究的每种情况下,与隔离感染后隔离的人群相比,接种较高比例的人群时,我们观察到疾病发生率的可测量降低。结论鉴于这些初步结果,我们计划将模型的框架扩展到动态控制系统,在该系统中,我们考虑了嵌入微分方程系统的疫苗接种和隔离费用。这种方法将使我们看到最佳的控制措施,同时将治疗和疫苗接种的成本降至最低。关键字控制;流行病学建模;传动动力学;成本; EBOLA参考

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号