...
首页> 外文期刊>Oil & gas science and technology >IFP-C3D: an Unstructured Parallel Solver for Reactive Compressible Gas Flow with Spray
【24h】

IFP-C3D: an Unstructured Parallel Solver for Reactive Compressible Gas Flow with Spray

机译:IFP-C3D:用于喷雾的反应性可压缩气流的非结构化平行求解器

获取原文
   

获取外文期刊封面封底 >>

       

摘要

IFP-C3D, a hexahedral unstructured parallel solver dedicated to multiphysics calculation, is being developed at IFP to compute the compressible combustion in internal engines. IFP-C3D uses an unstructured formalism, the finite volume method on staggered grids, time splitting, SIMPLE loop, sub-cycled advection, turbulent and Lagrangian spray and a liquid film model. Original algorithms and models such as the conditional temporal interpolation methodology for moving grids, the remapping algorithm for transferring quantities on different meshes during the computation enable IFP-C3D to deal with complex moving geometries with large volume deformation induced by all moving geometrical parts (intake/exhaust valve, piston). The Van Leer and Superbee slop limiters are used for advective fluxes and the wall law for the heat transfer model. Physical models developed at IFP for combustion (ECFM gasoline combustion model and ECFM3Z for Diesel combustion model), for ignition (TKI for auto-ignition and AKTIM for spark plug ignition) and for spray modelling enable the simulation of a large variety of innovative engine configurations from non-conventional Diesel engines using for instance HCCI combustion mode, to direct injection hydrogen internal combustion engines. Large super-scalar machines up to 1 000 processors are being widely used and IFP-C3D has been optimized for running on these Cluster machines. IFP-C3D is parallelized using the Message Passing Interface (MPI) library to distribute calculation over a large number of processors. Moreover, IFP-C3D uses an optimized linear algebraic library to solve linear matrix systems and the METIS partitionner library to distribute the computational load equally for all meshes used during the calculation and in particular during the remap stage when new meshes are loaded. Numerical results and timing are presented to demonstrate the computational efficiency of the code.
机译:IFP-C3D是专用于多物理场计算的六面体非结构化并行求解器,正在IFP进行开发,用于计算内燃机中的可压缩燃烧。 IFP-C3D使用非结构化形式,交错网格上的有限体积方法,时间分割,SIMPLE循环,次循环对流,湍流和拉格朗日喷雾以及液膜模型。原始算法和模型(例如,用于移动网格的条件时间插值方法,用于在计算过程中在不同网格上转移量的​​重新映射算法)使IFP-C3D能够处理复杂的移动几何结构,其中所有移动的几何零件(进气/排气门,活塞)。 Van Leer和Superbee坡度限制器用于对流通量,壁面定律用于传热模型。在IFP上开发的用于燃烧的物理模型(ECFM汽油燃烧模型和ECFM3Z用于柴油机燃烧模型),用于点火的模型(用于自动点火的TKI和用于火花塞点火的AKTIM)以及用于喷雾模型的物理模型可以模拟多种创新的发动机配置从使用HCCI燃烧模式的非常规柴油发动机,到直接喷射氢内燃机。多达1000个处理器的大型超标量计算机已被广泛使用,并且IFP-C3D已针对在这些集群计算机上运行进行了优化。使用消息传递接口(MPI)库对IFP-C3D进行并行处理,以在大量处理器上分布计算。此外,IFP-C3D使用优化的线性代数库来求解线性矩阵系统,并使用METIS分区器库将计算负荷平均分配给计算期间使用的所有网格,尤其是在加载新网格时的重映射阶段。给出了数值结果和时序以证明代码的计算效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号