...
首页> 外文期刊>Retina Today >Retina Today - Continuous-wave and Micropulse 577 nm Yellow Laser Photocoagulation: A Laser for All Reasons (April 2010)
【24h】

Retina Today - Continuous-wave and Micropulse 577 nm Yellow Laser Photocoagulation: A Laser for All Reasons (April 2010)

机译:当今的视网膜-连续波和微脉冲577 nm黄色激光光凝:各种原因的激光(2010年4月)

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Retinal photocoagulation is effective, but it is also destructive. In the past, the prevailing view was that to be useful, laser therapy had to destroy oxygen-consuming rods and cones or retinal pigment epithelium (RPE) cells that produce angiogenic mediators. That perspective has been disproven now by numerous clinical trials and better understanding of the cellular and molecular changes induced by laser exposures. PHOTOCOAGULATIONa??S BIOLOGICAL EFFECTSPhotocoagulation upregulates inhibitors and downregulates inducers of VEGF-related angiogenesis, as shown by microarray and quantitative polymerase chain reaction techniques.1-3 It downregulates matrix metalloproteinases, which degrade extracellular matrix, and it upregulates their tissue inhibitors, thereby inhibiting initiation and maintenance of angiogenesis.4 It induces bone marrowderived stem cells to migrate to exposure sites, where they can differentiate into and replace dysfunctional or injured cells.5-7 It also induces RPE apoptosis and choroidal heat shock proteins.8,9 Additionally, it upregulates pigment epithelium-derived factor (PEDF), a powerful inhibitor of angiogenesis.10 MICROPULSE PHOTOCOAGULATIONRandomized prospective clinical trials demonstrate that subthreshold micropulse photocoagulation is as effective a treatment for diabetic macular edema as conventional, more damaging laser therapy.11,12 Moreover, a recent study documents that it can improve visual sensitivity, whereas standard suprathreshold ETDRS-type photocoagulation decreases sensitivity.13 The bottom line is that subthreshold micropulse photocoagulation can be constructive without being destructive, whereas conventional suprathreshold photocoagulation causes permanent rod, cone, and retinal ganglion photoreceptor damage, with corresponding losses in scotopic, mesopic, and circadian photoreception.17,20 Micropulse photocoagulation can decrease retinal damage by: 1) using subvisible or barely visible treatment endpoints; 2) localizing laser effects with exposures 100 times shorter than those available with manual or automatedpattern conventional photocoagulators; and 3) optimizing laser wavelength.14 SUBTHRESHOLD ENDPOINTSPhotocoagulation occurs when laser radiation is absorbed primarily by melanin in the RPE and the choroid.14-17 Light absorption in pigmented tissues converts laser energy into heat, increasing the temperature of the pigmented tissue targets. Heat conduction then spreads this temperature rise from laser-irradiated pigmented tissue to overlying neural or collateral retina. Overlying retina damaged by heat conduction loses its transparency and scatters white slit lamp light back at the observer. Retinal whitening is the optical signature of a chorioretinal burn. More damage means less transparency and a whiter lesion.14,17 There are many a??thresholdsa?? for retinal laser exposures. Hemorrhages occur at roughly three times the exposure needed to produce ophthalmoscopically apparent lesions. Invisible lesions that are angiographically apparent occur at approximately half the laser exposure needed for a visible lesion. Maximum permissible exposure (MPE) levels established by international laser safety standards represent roughly one-tenth the laser exposure needed to produce a retinal effect.14,17,18 In clinical terms, a??subthresholda?? means a??invisible.a?? Smaller retinal irradiances (power density in W/cm2) produce therapeutic effects with lower retinal temperature rises that cause less or no retinal damage.14,17 LOCALIZING RETINAL EFFECTSFigure 1 shows retinal temperature increase in the neural retina, the RPE, and the choroid for a 200-micron diameter retina spot, and laser exposures ranging in duration from 1 microsecond to 0.1 second.15,16 For very short microsecond exposures, retinal temperature increases only in the RPE and choroid, where light is directly absorbed. For lengthier exposures, heat conduct
机译:视网膜光凝是有效的,但也是破坏性的。在过去,普遍的观点是,激光治疗必须有用,才能破坏产生血管生成介质的耗氧的视杆和视锥细胞或视网膜色素上皮细胞(RPE)。现在,这种观点已被众多临床试验和对由激光照射引起的细胞和分子变化的更好理解所证实。光凝作用是一种生物作用,如微阵列和定量聚合酶链反应技术所示,光凝作用可上调VEGF相关血管生成的抑制剂,并下调其诱导剂。1-3它可下调基质金属蛋白酶,后者降解细胞外基质,并上调其组织抑制剂,从而抑制其生长。 4诱导骨髓源性干细胞迁移至暴露部位,在那里它们可以分化并替代功能异常或受损的细胞。5-7它还诱导RPE细胞凋亡和脉络膜热休克蛋白。8,9此外,它会上调色素上皮衍生因子(PEDF),它是一种强有力的血管生成抑制剂。10微血管凝结一项前瞻性临床试验表明,亚阈值微脉冲光凝治疗与传统的,更具破坏性的激光治疗一样,是治疗糖尿病性黄斑水肿的有效方法。11,12此外,最近的研究文件13底线是亚阈值微脉冲光凝可以是建设性的而不会造成破坏,而传统的阈上微光凝会导致永久性杆,视锥和视网膜神经节光感受器损伤, [17,20]微脉冲光凝可通过以下方法减少视网膜损伤:1)使用不可见或几乎不可见的治疗终点; 2)定位激光效果,其曝光时间比手动或自动模式的常规光凝仪的曝光时间短100倍; ;以及3)优化激光波长。14亚阈值终点当激光辐射主要被RPE和脉络膜中的黑色素吸收时,就会发生光凝。14-17色素组织中的光吸收将激光能量转化为热量,从而升高了色素组织靶的温度。然后,热传导将这种温度升高从激光照射的色素组织扩散到上覆的神经或副视网膜。被热传导损坏的上方视网膜会失去透明性,并使白色裂隙灯的光散射回观察者。视网膜增白是脉络膜视网膜烧伤的光学特征。更多的损害意味着透明度降低和病变更白。14,17有很多“阈值”?用于视网膜激光照射。出血发生在产生眼底镜明显损伤所需的暴露量的大约三倍。血管造影可见的不可见病变大约发生在可见病变所需的激光照射量的一半处。由国际激光安全标准确定的最大允许照射量(MPE)大约代表产生视网膜效应所需的激光照射量的十分之一。14,17,18在临床上,“阈下”是指“阈下”。表示“不可见”。较小的视网膜辐照度(功率密度以W / cm2为单位)可产生较低的视网膜温度升高而产生治疗效果,从而引起较少或没有视网膜损伤。14,17视网膜局部化作用图1显示了视网膜的神经视网膜,RPE和脉络膜温度升高直径为200微米的视网膜斑点,激光照射的时间范围从1微秒到0.1秒。15,16对于非常短的微秒曝光,仅在直接吸收光的RPE和脉络膜中,视网膜温度会升高。对于更长的曝光时间,导热

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号