...
首页> 外文期刊>Remote Sensing >Numerical Mapping and Modeling Permafrost Thermal Dynamics across the Qinghai-Tibet Engineering Corridor, China Integrated with Remote Sensing
【24h】

Numerical Mapping and Modeling Permafrost Thermal Dynamics across the Qinghai-Tibet Engineering Corridor, China Integrated with Remote Sensing

机译:青藏工程走廊多年冻土热力学的数值制图与遥感集成

获取原文

摘要

Permafrost thermal conditions across the Qinghai–Tibet Engineering Corridor (QTEC) is of growing interest due to infrastructure development. Most modeling of the permafrost thermal regime has been conducted at coarser spatial resolution, which is not suitable for engineering construction in a warming climate. Here we model the spatial permafrost thermal dynamics across the QTEC from the 2010 to the 2060 using the ground thermal model. Soil properties are defined based on field measurements and ecosystem types. The climate forcing datasets are synthesized from MODIS-LST products and the reanalysis product of near-surface air temperature. The climate projections are based on long-term observations of air temperature across the QTEC. The comparison of model results to field measurements demonstrates a satisfactory agreement for the purpose of permafrost thermal modeling. The results indicate a discontinuous permafrost distribution in the QTEC. Mean annual ground temperatures (MAGT) are lowest (?2.0 °C) for the high mountains. In most upland plains, MAGTs range from ?2.0 °C to 0 °C. For high mountains, the average active-layer thickness (ALT) is less than 2.0 m, while the river valley features ALT of more than 4.0 m. For upland plains, the modeled ALTs generally range from 3.0 m to 4.0 m. The simulated results for the future 50 years suggest that 12.0%~20.2% of the permafrost region will be involved in degradation, with an MAGT increase of 0.4 °C~2.3 °C, and the ALT increasing by 0.4 m~7.3 m. The results of this study are useful for the infrastructure development, although there are still several improvements in detailed forcing datasets and a locally realistic model.
机译:由于基础设施的发展,青藏工程走廊(QTEC)上的多年冻土热条件越来越引起人们的关注。多年冻土热力状态的大多数建模都是在较粗糙的空间分辨率下进行的,这不适合在气候变暖的情况下进行工程建设。在这里,我们使用地面热模型对整个QTEC从2010年到2060年的空间多年冻土热动力学进行了建模。土壤特性是根据田间测量和生态系统类型定义的。气候强迫数据集由MODIS-LST产品和近地表气温的重新分析产品合成而成。气候预测是基于对QTEC的长期气温观测。将模型结果与现场测量结果进行比较表明,对于多年冻土热模型建模,该协议令人满意。结果表明QTEC中的多年冻土分布不连续。高山的年平均地面温度(MAGT)最低(<?2.0°C)。在大多数山地平原上,MAGT的温度范围为?2.0°C至0°C。对于高山,平均活动层厚度(ALT)小于2.0 m,而河谷的ALT大于4.0 m。对于高地平原,模拟的ALT范围通常为3.0 m至4.0 m。未来50年的模拟结果表明,多年冻土地区将参与退化,占12.0%〜20.2%,MAGT升高0.4°C〜2.3°C,ALT升高0.4 m〜7.3 m。尽管详细的强制数据集和局部实际模型仍然有一些改进,但本研究的结果对于基础设施开发很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号