...
首页> 外文期刊>Remote Sensing >Flood Damage Analysis: First Floor Elevation Uncertainty Resulting from LiDAR-Derived Digital Surface Models
【24h】

Flood Damage Analysis: First Floor Elevation Uncertainty Resulting from LiDAR-Derived Digital Surface Models

机译:洪水破坏分析:LiDAR衍生的数字表面模型导致的一楼高程不确定性

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The use of high resolution ground-based light detection and ranging (LiDAR) datasets provides spatial density and vertical precision for obtaining highly accurate Digital Surface Models (DSMs). As a result, the reliability of flood damage analysis has improved significantly, owing to the increased accuracy of hydrodynamic models. In addition, considerable error reduction has been achieved in the estimation of first floor elevation, which is a critical parameter for determining structural and content damages in buildings. However, as with any discrete measurement technique, LiDAR data contain object space ambiguities, especially in urban areas where the presence of buildings and the floodplain gives rise to a highly complex landscape that is largely corrected by using ancillary information based on the addition of breaklines to a triangulated irregular network (TIN). The present study provides a methodological approach for assessing uncertainty regarding first floor elevation. This is based on: ( i ) generation an urban TIN from LiDAR data with a density of 0.5 points·m ?2 , complemented with the river bathymetry obtained from a field survey with a density of 0.3 points·m ?2 . The TIN was subsequently improved by adding breaklines and was finally transformed to a raster with a spatial resolution of 2 m; ( ii ) implementation of a two-dimensional (2D) hydrodynamic model based on the 500-year flood return period. The high resolution DSM obtained in the previous step, facilitated addressing the modelling, since it represented suitable urban features influencing hydraulics (e.g., streets and buildings); and ( iii ) determination of first floor elevation uncertainty within the 500-year flood zone by performing Monte Carlo simulations based on geostatistics and 1997 control elevation points in order to assess error. Deviations in first floor elevation (average: 0.56 m and standard deviation: 0.33 m) show that this parameter has to be neatly characterized in order to obtain reliable assessments of flood damage assessments and implement realistic risk management.
机译:使用高分辨率的地面光检测和测距(LiDAR)数据集可提供空间密度和垂直精度,以获取高精度的数字表面模型(DSM)。结果,由于增加了流体动力学模型的准确性,洪水破坏分析的可靠性得到了显着提高。此外,在估算一楼高度时已大大降低了误差,这是确定建筑物中结构和内容损坏的关键参数。但是,与任何离散测量技术一样,LiDAR数据包含对象空间的歧义性,尤其是在建筑物和洪泛区的存在导致高度复杂的景观的城市地区,可以通过使用基于附加断线的辅助信息对其进行较大程度的校正。三角不规则网络(TIN)。本研究提供了一种方法方法来评估有关一楼高程的不确定性。这是基于:(i)从LiDAR数据生成密度为0.5点·m?2的城市TIN,并补充了从密度为0.3点·m?2的野外勘测获得的河流测深法。 TIN随后通过添加断线进行了改进,并最终转换为空间分辨率为2 m的栅格; (ii)基于500年洪灾回返期的二维(2D)水动力模型的实现。上一步获得的高分辨率DSM有助于解决建模问题,因为它代表了影响水力的合适城市特征(例如街道和建筑物); (iii)通过基于地统计学和1997年控制高程点进行蒙特卡罗模拟来确定500年洪水带内一楼高程不确定性,以评估误差。一楼高程的偏差(平均:0.56 m,标准偏差:0.33 m)表明,必须对该参数进行整洁的表征,以便获得可靠的洪水灾害评估评估并实施切合实际的风险管理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号