...
首页> 外文期刊>Remote Sensing >Mapping High-Resolution Soil Moisture over Heterogeneous Cropland Using Multi-Resource Remote Sensing and Ground Observations
【24h】

Mapping High-Resolution Soil Moisture over Heterogeneous Cropland Using Multi-Resource Remote Sensing and Ground Observations

机译:利用多资源遥感和地面观测绘制非均质农田上高分辨率土壤水分图

获取原文
           

摘要

High spatial resolution soil moisture (SM) data are crucial in agricultural applications, river-basin management, and understanding hydrological processes. Merging multi-resource observations is one of the ways to improve the accuracy of high spatial resolution SM data in the heterogeneous cropland. In this paper, the Bayesian Maximum Entropy (BME) methodology is implemented to merge the following four types of observed data to obtain the spatial distribution of SM at 100 m scale: soil moisture observed by wireless sensor network (WSN), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)-derived soil evaporative efficiency (SEE), irrigation statistics, and Polarimetric L-band Multi-beam Radiometer (PLMR)-derived SM products (~700 m). From the poor BME predictions obtained by merging only WSN and SEE data, we observed that the SM heterogeneity caused by irrigation and the attenuating sensitivity of the SEE data to SM caused by the canopies result in BME prediction errors. By adding irrigation statistics to the merged datasets, the overall RMSD of the BME predictions during the low-vegetated periods can be successively reduced from 0.052 m3·m−3 to 0.033 m3·m−3. The coefficient of determination (R2) and slope between the predicted and in situ measured SM data increased from 0.32 to 0.64 and from 0.38 to 0.82, respectively, but large estimation errors occurred during the moderately vegetated periods (RMSD = 0.041 m3·m−3, R = 0.43 and the slope = 0.41). Further adding the downscaled SM information from PLMR SM products to the merged datasets, the predictions were satisfactorily accurate with an RMSD of 0.034 m3·m−3, R2 of 0.4 and a slope of 0.69 during moderately vegetated periods. Overall, the results demonstrated that merging multi-resource observations into SM estimations can yield improved accuracy in heterogeneous cropland.
机译:高空间分辨率的土壤水分(SM)数据对于农业应用,流域管理和了解水文过程至关重要。合并多资源观测值是提高非均质农田中高空间分辨率SM数据准确性的方法之一。本文采用贝叶斯最大熵(BME)方法来合并以下四种类型的观测数据以获得100 m尺度上SM的空间分布:通过无线传感器网络(WSN)观测到的土壤湿度,先进的星载热发射和反射辐射计(ASTER)衍生的土壤蒸发效率(SEE),灌溉统计数据以及极化L波段多束辐射计(PLMR)衍生的SM产品(约700 m)。从仅合并WSN和SEE数据获得的不良BME预测中,我们观察到由灌溉引起的SM异质性以及由冠层引起的SEE数据对SM的衰减敏感性导致BME预测错误。通过将灌溉统计数据添加到合并的数据集中,可以将低植被期BME预测的总体RMSD从0.052 m 3 ·m -3 依次降低至0.033 m 3 ·m -3 。确定系数(R 2 )和预测的SM数据和原位测量的SM数据之间的斜率分别从0.32增加到0.64和从0.38增加到0.82,但是在中等植被时期会发生较大的估计误差( RMSD = 0.041 m 3 ·m -3 ,R = 0.43,斜率= 0.41)。进一步将来自PLMR SM产品的按比例缩小的SM信息添加到合并的数据集中,预测准确度令人满意,RMSD为0.034 m 3 ·m -3 ,R 2 为0.4,中等植被坡度为0.69。总体而言,结果表明,将多资源观测值合并到SM估计中,可以提高异种农田的准​​确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号