首页> 外文期刊>Remote Sensing >Challenges and Future Perspectives of Multi-/Hyperspectral Thermal Infrared Remote Sensing for Crop Water-Stress Detection: A Review
【24h】

Challenges and Future Perspectives of Multi-/Hyperspectral Thermal Infrared Remote Sensing for Crop Water-Stress Detection: A Review

机译:多/高光谱热红外遥感技术在作物水分胁迫检测中的挑战与未来展望

获取原文
       

摘要

Thermal infrared (TIR) multi-/hyperspectral and sun-induced fluorescence (SIF) approaches together with classic solar-reflective (visible, near-, and shortwave infrared reflectance (VNIR)/SWIR) hyperspectral remote sensing form the latest state-of-the-art techniques for the detection of crop water stress. Each of these three domains requires dedicated sensor technology currently in place for ground and airborne applications and either have satellite concepts under development (e.g., HySPIRI/SBG (Surface Biology and Geology), Sentinel-8, HiTeSEM in the TIR) or are subject to satellite missions recently launched or scheduled within the next years (i.e., EnMAP and PRISMA (PRecursore IperSpettrale della Missione Applicativa, launched on March 2019) in the VNIR/SWIR, Fluorescence Explorer (FLEX) in the SIF). Identification of plant water stress or drought is of utmost importance to guarantee global water and food supply. Therefore, knowledge of crop water status over large farmland areas bears large potential for optimizing agricultural water use. As plant responses to water stress are numerous and complex, their physiological consequences affect the electromagnetic signal in different spectral domains. This review paper summarizes the importance of water stress-related applications and the plant responses to water stress, followed by a concise review of water-stress detection through remote sensing, focusing on TIR without neglecting the comparison to other spectral domains (i.e., VNIR/SWIR and SIF) and multi-sensor approaches. Current and planned sensors at ground, airborne, and satellite level for the TIR as well as a selection of commonly used indices and approaches for water-stress detection using the main multi-/hyperspectral remote sensing imaging techniques are reviewed. Several important challenges are discussed that occur when using spectral emissivity, temperature-based indices, and physically-based approaches for water-stress detection in the TIR spectral domain. Furthermore, challenges with data processing and the perspectives for future satellite missions in the TIR are critically examined. In conclusion, information from multi-/hyperspectral TIR together with those from VNIR/SWIR and SIF sensors within a multi-sensor approach can provide profound insights to actual plant (water) status and the rationale of physiological and biochemical changes. Synergistic sensor use will open new avenues for scientists to study plant functioning and the response to environmental stress in a wide range of ecosystems.
机译:热红外(TIR)多/高光谱和太阳诱导荧光(SIF)方法与经典的太阳反射(可见光,近波和短波红外反射率(VNIR)/ SWIR)高光谱遥感一起形成了最新的状态用于检测作物水分胁迫的最新技术。这三个领域中的每个领域都需要当前针对地面和空中应用的专用传感器技术,并且正在开发卫星概念(例如,HySPIRI / SBG(表面生物学和地质学),Sentinel-8,TIR中的HiTeSEM)或受制于最近在计划或计划在未来几年内发射的卫星任务(即EnMAP和PRISMA(PRecursore IperSpettrale della Missione Applicativa,于2019年3月发射)在SN中的VNIR / SWIR,荧光探测器(FLEX)。确定植物水分胁迫或干旱对于保证全球水和粮食供应至关重要。因此,了解大片农田的作物水状况具有优化农业用水的巨大潜力。由于植物对水分胁迫的反应众多且复杂,其生理后果会影响不同光谱域中的电磁信号。这篇综述论文总结了水分胁迫相关应用和植物对水分胁迫的响应的重要性,然后简要回顾了通过遥感进行的水分胁迫检测,重点是TIR,而没有忽略与其他光谱域的比较(即,VNIR / SWIR和SIF)和多传感器方法。综述了目前和计划中的TIR地面,空中和卫星级别的传感器,以及使用主要的多/高光谱遥感成像技术对常用的水压力检测指标和方法进行了选择。讨论了在TIR光谱域中使用光谱发射率,基于温度的指标和基于物理的方法进行水压力检测时会发生的几个重要挑战。此外,还严格审查了数据处理方面的挑战以及TIR中未来卫星任务的前景。总之,在多传感器方法中,来自多/高光谱TIR的信息以及来自VNIR / SWIR和SIF传感器的信息可以为实际植物(水)状况以及生理和生化变化的原理提供深刻的见解。协同传感器的使用将为科学家研究广泛的生态系统中的植物功能以及对环境胁迫的响应开辟新的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号