首页> 外文期刊>Research in Number Theory >Non-residually finite extensions of arithmetic groups
【24h】

Non-residually finite extensions of arithmetic groups

机译:算术组的非残差有限扩展

获取原文
       

摘要

The aim of the article is to show that there are many finite extensions of arithmetic groups which are not residually finite. Suppose G is a simple algebraic group over the rational numbers satisfying both strong approximation, and the congruence subgroup problem. We show that every arithmetic subgroup of G has finite extensions which are not residually finite. More precisely, we investigate the group $$egin{aligned} {ar{H}}^2(mathbb {Z}) = egin{array}{c} lim {mathop {scriptstyle arGamma }limits ^{extstyle ightarrow }} end{array} H^2(arGamma ,mathbb {Z}), end{aligned}$$ H ˉ 2 ( Z / n ) = lim Γ → H 2 ( Γ , Z / n ) , where $$arGamma $$ Γ runs through the arithmetic subgroups of G . Elements of $${ar{H}}^2(mathbb {Z})$$ H ˉ 2 ( Z / n ) correspond to (equivalence classes of) central extensions of arithmetic groups by $$mathbb {Z}$$ Z / n ; non-zero elements of $${ar{H}}^2(mathbb {Z})$$ H ˉ 2 ( Z / n ) correspond to extensions which are not residually finite. We prove that $${ar{H}}^2(mathbb {Z})$$ H ˉ 2 ( Z / n ) contains infinitely many elements of order n , some of which are invariant for the action of the arithmetic completion $${widehat{G(mathbb {Q})}}$$ G ( Q ) ^ of $$G(mathbb {Q})$$ G ( Q ) . We also investigate which of these (equivalence classes of) extensions lift to characteristic zero, by determining the invariant elements in the group $$egin{aligned} {ar{H}}^2({mathbb {Z}_l}) = egin{array}{c} lim {mathop {scriptstyle t}limits ^{extstyle leftarrow }} end{array} {ar{H}}^2(mathbb {Z}/l^t). end{aligned}$$ H ˉ 2 ( Z l ) = lim t ← H ˉ 2 ( Z / l t ) . We show that $${ar{H}}^2({mathbb {Z}_l})^{widehat{G(mathbb {Q})}}$$ H ˉ 2 ( Z l ) G ( Q ) ^ is isomorphic to $${mathbb {Z}_l}^c$$ Z l c for some positive integer c . When $$G(mathbb {R})$$ G ( R ) has no simple components of complex type, we prove that $$c=b+m$$ c = b + m , where b is the number of simple components of $$G(mathbb {R})$$ G ( R ) and m is the dimension of the centre of a maximal compact subgroup of $$G(mathbb {R})$$ G ( R ) . In all other cases, we prove upper and lower bounds on c ; our lower bound (which we believe is the correct number) is $$b+m$$ b + m .
机译:本文的目的是证明算术组有许多有限扩展,而这些扩展不是残差有限的。假设G是同时满足强逼近和有序子群问题的有理数的简单代数群。我们表明,G的每个算术子组都有有限扩展,而这些扩展不是残差有限的。更确切地说,我们调查组$$ begin {aligned} { bar {H}} ^ 2( mathbb {Z} / n)= begin {array} {c} lim { mathop { scriptstyle varGamma} limits ^ { textstyle rightarrow}} end {array} H ^ 2( varGamma, mathbb {Z} / n), end {aligned} $$ Hˉ2(Z / n) = limΓ→H 2(Γ,Z / n),其中$$ varGamma $$Γ贯穿G的算术子组。 $$ { bar {H}} ^ 2( mathbb {Z} / n)$$ Hˉ2(Z / n)的元素对应于$$ mathbb { Z} / n $$ Z / n; $$ { bar {H}} ^ 2( mathbb {Z} / n)$$ Hˉ2(Z / n)的非零元素对应于不是残差有限的扩展。我们证明$$ { bar {H}} ^ 2( mathbb {Z} / n)$$ Hˉ2(Z / n)包含无限多个n阶元素,其中某些元素对于n的作用是不变的的$$ G( mathbb {Q})$$ G(Q)的算术完成$$ { widehat {G( mathbb {Q})}} $$ G(Q)^。通过确定组$$ begin {aligned} { bar {H}} ^ 2({ mathbb {Z} _l}中的不变元素,我们还研究了这些(等价类)扩展中的哪些提升为特征零。 )= begin {array} {c} lim { mathop { scriptstyle t} limits ^ { textstyle leftarrow}} end {array} { bar {H}} ^ 2( mathbb { Z} / l ^ t)。 end {aligned} $$ Hˉ2(Z l)= lim t←Hˉ2(Z / l t)。我们表明$$ { bar {H}} ^ 2({ mathbb {Z} _l})^ { widehat {G( mathbb {Q})}} $$ Hˉ2(Z l)G(对于一个正整数c,Q)^与$$ { mathbb {Z} _1} ^ c $$ Z lc同构。当$$ G( mathbb {R})$$ G(R)没有复杂类型的简单成分时,我们证明$$ c = b + m $$ c = b + m,其中b是简单数$$ G( mathbb {R})$$ G(R)的分量和m是$$ G( mathbb {R})$$ G(R)的最大紧致子组的中心尺寸。在所有其他情况下,我们证明c的上限和下限;我们的下界(我们认为是正确的数字)是$$ b + m $$ b + m。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号