...
首页> 外文期刊>Redox Biology >An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins – From superoxide dismutation to H2O2-driven pathways
【24h】

An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins – From superoxide dismutation to H2O2-driven pathways

机译:锰卟啉的化学,生物化学和治疗方面的教育概况–从超氧化物歧化到H2O2驱动的途径

获取原文
           

摘要

Most of the {SOD} mimics thus far developed belong to the classes of Mn-(MnPs) and Fe porphyrins(FePs), Mn(III) salens, Mn(II) cyclic polyamines and metal salts. Due to their remarkable stability we have predominantly explored Mn porphyrins, aiming initially at mimicking kinetics and thermodynamics of the catalysis of O2? dismutation by {SOD} enzymes. Several MnPs are of potency similar to {SOD} enzymes. The in vivo bioavailability and toxicity of MnPs have been addressed also. Numerous in vitro and in vivo studies indicate their impressive therapeutic efficacy. Increasing insight into complex cellular redox biology has been accompanied by increasing awareness of complex redox chemistry of MnPs. During O2? dismutation process, the most powerful Mn porphyrin-based {SOD} mimics reduce and oxidize O2? with close to identical rate constants. MnPs reduce and oxidize other reactive species also (none of them specific to MnPs), acting as reductants (antioxidant) and pro-oxidants. Distinction must be made between the type of reactions of MnPs and the favorable therapeutic effects we observe; the latter may be of either anti- or pro-oxidative nature. H2O2/MnP mediated oxidation of protein thiols and its impact on cellular transcription seems to dominate redox biology of MnPs. It has been thus far demonstrated that the ability of MnPs to catalyze O2? dismutation parallels all other reactivities (such as ONOO? reduction) and in turn their therapeutic efficacies. Assuming that all diseases have in common the perturbation of cellular redox environment, developing {SOD} mimics still seems to be the appropriate strategy for the design of potent redox-active therapeutics.
机译:迄今为止开发的大多数 {SOD }模拟物都属于Mn-(MnPs)和Fe卟啉(FePs),Mn(III)salens,Mn(II)环状多胺和金属盐类。由于它们出色的稳定性,我们主要研究了锰卟啉,最初旨在模拟O2催化的动力学和热力学。由 {SOD }酶分解。几种MnP的功效类似于 {SOD }酶。还已经解决了MnPs的体内生物利用度和毒性。大量的体外和体内研究表明它们令人印象深刻的治疗功效。随着对复杂细胞氧化还原生物学的深入了解,伴随着对MnPs复杂氧化还原化学认识的提高。在O2期间?歧化过程中,功能最强大的基于锰卟啉的 {SOD }模拟物会还原和氧化O2?具有几乎相同的速率常数。 MnPs还还原和氧化其他反应性物质(它们都不是MnPs特有的),用作还原剂(抗氧化剂)和前氧化剂。必须区分MnPs的反应类型和我们观察到的良好治疗效果。后者可以具有抗氧化性或促氧化性。 H2O2 / MnP介导的蛋白质硫醇的氧化及其对细胞转录的影响似乎主导着MnP的氧化还原生物学。迄今为止,已经证明了MnPs催化O 2的能力。杂化与所有其他反应性(例如ONOO?降低)平行,进而具有治疗功效。假设所有疾病都具有共同的细胞氧化还原环境扰动,开发 {SOD }模拟物似乎仍然是设计有效氧化还原活性疗法的合适策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号