首页> 外文期刊>Regenerative Biomaterials >Next-generation resorbable polymer scaffolds with surface-precipitated calcium phosphate coatings
【24h】

Next-generation resorbable polymer scaffolds with surface-precipitated calcium phosphate coatings

机译:带有表面沉淀磷酸钙涂层的新一代可吸收聚合物支架

获取原文
       

摘要

Next-generation synthetic bone graft therapies will most likely be composed of resorbable polymers in combination with bioactive components. In this article, we continue our exploration of E1001(1k), a tyrosine-derived polycarbonate, as an orthopedic implant material. Specifically, we use E1001(1k), which is degradable, nontoxic, and osteoconductive, to fabricate porous bone regeneration scaffolds that were enhanced by two different types of calcium phosphate (CP) coatings: in one case, pure dicalcium phosphate dihydrate was precipitated on the scaffold surface and throughout its porous structure (E1001(1k)?+?CP). In the other case, bone matrix minerals (BMM) such as zinc, manganese and fluoride were co-precipitated within the dicalcium phosphate dihydrate coating (E1001(1k)?+?BMM). These scaffold compositions were compared against each other and against ChronOS (Synthes USA, West Chester, PA, USA), a clinically used bone graft substitute (BGS), which served as the positive control in our experimental design. This BGS is composed of poly(lactide co-ε-caprolactone) and beta-tricalcium phosphate. We used the established rabbit calvaria critical-sized defect model to determine bone regeneration within the defect for each of the three scaffold compositions. New bone formation was determined after 2, 4, 6, 8 and 12 weeks by micro-computerized tomography (μCT) and histology. The experimental tyrosine-derived polycarbonate, enhanced with dicalcium phosphate dihydrate, E1001(1k)?+?CP, supported significant bone formation within the defects and was superior to the same scaffold containing a mix of BMM, E1001(1k)?+?BMM. The comparison with the commercially available BGS was complicated by the large variability in bone formation observed for the laboratory preparations of E1001(1k) scaffolds. At all time points, there was a trend for E1001(1k)?+?CP to be superior to the commercial BGS. However, only at the 6-week time point did this trend reach statistical significance. Detailed analysis of the μCT data suggested an increase in bone formation from 2 through 12 weeks in implant sites treated with E1001(1k)?+?CP. At 2 and 4 weeks post-implantation, bone formation occurred at the interface where the E1001(1k)?+?CP scaffold was in contact with the bone borders of the implant site. Thereafter, during weeks 6, 8 and 12 bone formation progressed throughout the E1001(1k)?+?CP test implants. This trend was not observed with E1001(1k)?+?BMM scaffolds or the clinically used BGS. Our results suggest that E1001(1k)?+?CP should be tested further for osteoregenerative applications.
机译:下一代合成骨移植疗法很可能由可吸收聚合物与生物活性成分结合而成。在本文中,我们将继续探索酪氨酸衍生的聚碳酸酯E1001(1k)作为整形外科植入材料。具体来说,我们使用可降解,无毒且具有骨传导性的E1001(1k)来制造多孔骨再生支架,该支架由两种不同类型的磷酸钙(CP)涂层增强:在一种情况下,纯的磷酸二钙二水合物沉淀在支架表面及其整个多孔结构(E1001(1k)?+?CP)。在另一种情况下,锌,锰和氟化物等骨基质矿物质(BMM)在二水合磷酸二钙涂层(E1001(1k)β+βBMM)中共沉淀。将这些支架组合物相互比较,并与临床使用的骨移植替代物(BGS)ChronOS(Synthes美国,West Chester,PA,美国)进行了比较,该实验在我们的实验设计中用作阳性对照。该BGS由聚(丙交酯-ε-己内酯)和β-磷酸三钙组成。我们使用已建立的兔颅骨关键尺寸缺损模型来确定三种支架组合物中每种缺损内的骨再生。在第2、4、6、8和12周后通过微计算机断层扫描(μCT)和组织学检查确定新的骨形成。实验性酪氨酸衍生的聚碳酸酯,用磷酸二钙二水合物E1001(1k)?+?CP增强,可以在缺损处形成明显的骨形成,并且优于包含BMM,E1001(1k)?+?BMM混合物的相同支架。对于E1001(1k)支架的实验室制剂,观察到的骨骼形成的巨大差异使与市售BGS的比较变得复杂。在所有时间点上,都有E1001(1k)?+?CP优于商用BGS的趋势。但是,只有在6周的时间点,这种趋势才达到统计显着性。对μCT数据的详细分析表明,在用E1001(1k)++ CP处理的植入部位中,从2周到12周骨形成增加。植入后2和4周,在E1001(1k)β+βCP支架与植入部位的骨边界接触的界面处发生了骨形成。此后,在第6、8和12周内,整个E1001(1k)β+βCP测试植入物的骨形成都在进行。 E1001(1k)β+βBMM支架或临床使用的BGS并未观察到这种趋势。我们的结果表明,应进一步测试E1001(1k)β+βCP的骨再生应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号