首页> 外文期刊>Rambam Maimonides Medical Journal >Impact of Heparanase and the Tumor Microenvironment on Cancer Metastasis and Angiogenesis: Basic Aspects and Clinical Applications
【24h】

Impact of Heparanase and the Tumor Microenvironment on Cancer Metastasis and Angiogenesis: Basic Aspects and Clinical Applications

机译:乙酰肝素酶和肿瘤微环境对癌症转移和血管生成的影响:基本方面和临床应用

获取原文
           

摘要

Heparanase is an endo-β-D-glucuronidase that cleaves heparan sulfate (HS) side chains at a limited number of sites, activity that is strongly implicated with cell invasion associated with cancer metastasis, a consequence of structural modification that loosens the extracellular matrix barrier. Heparanase activity is also implicated in neovascularization, inflammation, and autoimmunity, involving migration of vascular endothelial cells and activated cells of the immune system. The cloning of a single human heparanase cDNA 10 years ago enabled researchers to critically approve the notion that HS cleavage by heparanase is required for structural remodeling of the extracellular matrix (ECM), thereby facilitating cell invasion. Heparanase is preferentially expressed in human tumors and its over-expression in tumor cells confers an invasive phenotype in experimental animals. The enzyme also releases angiogenic factors residing in the tumor microenvironment and thereby induces an angiogenic response in vivo. Heparanase up-regulation correlates with increased tumor vascularity and poor postoperative survival of cancer patients. These observations, the anticancerous effect of heparanase gene silencing and of heparanase-inhibiting molecules, as well as the unexpected identification of a single functional heparanase suggest that the enzyme is a promising target for anticancer drug development. Progress in the field expanded the scope of heparanase function and its significance in tumor progression and other pathologies such as inflammatory bowel disease and diabetic nephropathy. Notably, while heparanase inhibitors attenuated tumor progression and metastasis in several experimental systems, other studies revealed that heparanase also functions in an enzymatic activity-independent manner. Thus, point-mutated inactive heparanase was noted to promote phosphorylation of signaling molecules such as Akt and Src, facilitating gene transcription (i.e. VEGF) and phosphorylation of selected Src substrates (i.e. EGF receptor). The concept of enzymatic activity-independent function of heparanase gained substantial support by elucidation of the heparanase C-terminus domain as the molecular determinant behind its signaling capacity and the identification of a human heparanase splice variant (T5) devoid of enzymatic activity, yet endowed with protumorigenic characteristics. Resolving the heparanase crystal structure will accelerate rational design of effective inhibitory molecules and neutralizing antibodies, paving the way for advanced clinical trials in patients with cancer and other diseases involving heparanase.Keywords: Heparanase, heparan sulfate, extracellular matrix, angiogenesis, metastasis, inflammation, myeloma, signaling, C-domain, matrix metalloproteinasePREFACEThe extracellular matrix (ECM) is a heterogeneous mixture of proteins and polysaccharides that surrounds cells, providing physical support for cellular organization into tissue and organs. Traditionally, the ECM was regarded as an inert scaffold providing a structural framework for cells to form tissues and organs. Specifically, our research focuses on heparan sulfate (HS) glycosaminoglycan (GAG), one of the most important subsets of the ECM and cell surface molecules, shown to have a pronounced effect on fundamental biological processes, ranging from development and formation of blood vessels to cell invasion and viral infection. While 4 and 20 building-blocks make nucleic acids and proteins, respectively, 32 disaccharide building-blocks make up these complex, highly acidic, and information-dense biopolymers. The chemical heterogeneity and structural complexity of GAGs make investigations of these molecules most challenging, with fundamental questions arising as to how topological positioning and function of cells and tissues are regulated by GAGs.Back in 1979, we were among the first to realize that the ECM plays an active role in orchestrating cellular responses to both normal an
机译:乙酰肝素酶是一种β-D-葡萄糖醛酸内切酶,可在有限的位点切割硫酸乙酰肝素(HS)侧链,这种活性与与癌症转移相关的细胞浸润密切相关,这是结构修饰的结果,使细胞外基质屏障松动。乙酰肝素酶活性也与新血管形成,炎症和自身免疫有关,涉及血管内皮细胞和免疫系统活化细胞的迁移。 10年前克隆单个人乙酰肝素酶cDNA,使研究人员可以批判性地批准以下观念:肝素酶需要HS裂解才能进行细胞外基质(ECM)的结构重塑,从而促进细胞入侵。乙酰肝素酶优先在人肿瘤中表达,其在肿瘤细胞中的过度表达赋予实验动物侵袭性表型。该酶还释放存在于肿瘤微环境中的血管生成因子,从而在体内诱导血管生成反应。乙酰肝素酶的上调与肿瘤血管的增加和癌症患者术后生存期差有关。这些观察结果,乙酰肝素酶基因沉默和乙酰肝素酶抑制分子的抗癌作用以及单个功能性乙酰肝素酶的意外鉴定表明,该酶是抗癌药物开发的有希望的靶标。该领域的进展扩大了乙酰肝素酶功能的范围及其在肿瘤进展和其他病理学例如炎症性肠病和糖尿病性肾病中的意义。值得注意的是,尽管乙酰肝素酶抑制剂在一些实验系统中可减轻肿瘤的进展和转移,但其他研究表明乙酰肝素酶也以不依赖酶活性的方式起作用。因此,注意到点突变的无活性乙酰肝素酶促进信号传导分子例如Akt和Src的磷酸化,促进基因转录(即VEGF)和所选的Src底物(即EGF受体)的磷酸化。通过阐明乙酰肝素酶C末端结构域作为其信号传递能力背后的分子决定因素,并鉴定出缺乏酶促活性的人类乙酰肝素酶剪接变体(T5),乙酰肝素酶的非酶活性独立功能概念得到了实质性支持。致瘤特性。解决肝素酶晶体结构将加速有效抑制分子的合理设计和中和抗体,为癌症和其他涉及肝素酶的疾病的患者进行高级临床试验铺平道路。关键词:肝素酶,硫酸乙酰肝素,细胞外基质,血管生成,转移,炎症,骨髓瘤,信号传导,C结构域,基质金属蛋白酶前言细胞外基质(ECM)是蛋白质和多糖的异质混合物,包围细胞,为细胞组织到组织和器官提供物理支持。传统上,ECM被视为一种惰性支架,为细胞形成组织和器官提供了结构框架。具体来说,我们的研究重点是硫酸乙酰肝素(HS)糖胺聚糖(GAG),它是ECM和细胞表面分子的最重要子集之一,对基本的生物学过程(从血管的发育和形成到细胞入侵和病毒感染。尽管有4个和20个构建基块分别构成核酸和蛋白质,但32个二糖构建基块构成了这些复杂的,高度酸性和信息密集的生物聚合物。 GAG的化学异质性和结构复杂性使对这些分子的研究最具挑战性,并提出了有关GAG如何调节细胞和组织的拓扑定位和细胞功能的基本问题。早在1979年,我们就率先意识到ECM在协调细胞对正常人和人的反应中起积极作用

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号