...
首页> 外文期刊>Logical Methods in Computer Science >Upper Bounds on the Quantifier Depth for Graph Differentiation in First-Order Logic
【24h】

Upper Bounds on the Quantifier Depth for Graph Differentiation in First-Order Logic

机译:一阶逻辑中用于图微分的量词深度的上界

获取原文
   

获取外文期刊封面封底 >>

       

摘要

We show that on graphs with n vertices, the 2-dimensional Weisfeiler-Lemanalgorithm requires at most O(n^2/log(n)) iterations to reach stabilization.This in particular shows that the previously best, trivial upper bound ofO(n^2) is asymptotically not tight. In the logic setting, this translates tothe statement that if two graphs of size n can be distinguished by a formula infirst-order logic with counting with 3 variables (i.e., in C3), then they canalso be distinguished by a C3-formula that has quantifier depth at mostO(n^2/log(n)). To prove the result we define a game between two players that enables us todecouple the causal dependencies between the processes happening simultaneouslyover several iterations of the algorithm. This allows us to treat large colorclasses and small color classes separately. As part of our proof we show thatfor graphs with bounded color class size, the number of iterations untilstabilization is at most linear in the number of vertices. This also yields acorresponding statement in first-order logic with counting. Similar results can be obtained for the respective logic without countingquantifiers, i.e., for the logic L3.
机译:我们显示在具有n个顶点的图上,二维Weisfeiler-Lemanalgorithm最多需要O(n ^ 2 / log(n))次迭代才能达到稳定,这特别表明了O(n ^ 2)渐近不紧。在逻辑设置中,这转换为以下语句:如果两个n大小的图形都可以由一阶逻辑用3个变量进行计数来区分(即在C3中),那么它们也可以由具有量词深度最大为O(n ^ 2 / log(n))。为了证明结果,我们在两个参与者之间定义了一个博弈,该博弈使我们能够解耦在算法的多次迭代中同时发生的流程之间的因果关系。这使我们可以分别处理大颜色分类和小颜色分类。作为证明的一部分,我们显示出对于有界颜色类大小的图,直到稳定化为止的迭代次数最多在顶点数量上是线性的。这也产生带有计数的一阶逻辑的对应语句。对于没有计数量化器的相应逻辑,即对于逻辑L3,可以获得类似的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号