首页> 外文期刊>LIPIcs : Leibniz International Proceedings in Informatics >Complexity-Theoretic Foundations of Quantum Supremacy Experiments
【24h】

Complexity-Theoretic Foundations of Quantum Supremacy Experiments

机译:量子至上实验的复杂性-理论基础

获取原文
       

摘要

In the near future, there will likely be special-purpose quantum computers with 40-50 high-quality qubits. This paper lays general theoretical foundations for how to use such devices to demonstrate "quantum supremacy": that is, a clear quantum speedup for some task, motivated by the goal of overturning the Extended Church-Turing Thesis as confidently as possible. First, we study the hardness of sampling the output distribution of a random quantum circuit, along the lines of a recent proposal by by the Quantum AI group at Google. We show that there's a natural average-case hardness assumption, which has nothing to do with sampling, yet implies that no polynomial-time classical algorithm can pass a statistical test that the quantum sampling procedure's outputs do pass. Compared to previous work - for example, on BosonSampling and IQP - the central advantage is that we can now talk directly about the observed outputs, rather than about the distribution being sampled. Second, in an attempt to refute our hardness assumption, we give a new algorithm, inspired by Savitch's Theorem, for simulating a general quantum circuit with n qubits and m gates in polynomial space and m^O(n) time. We then discuss why this and other known algorithms fail to refute our assumption. Third, resolving an open problem of Aaronson and Arkhipov, we show that any strong quantum supremacy theorem - of the form "if approximate quantum sampling is classically easy, then the polynomial hierarchy collapses" - must be non-relativizing. This sharply contrasts with the situation for exact sampling. Fourth, refuting a conjecture by Aaronson and Ambainis, we show that the Fourier Sampling problem achieves a constant versus linear separation between quantum and randomized query complexities. Fifth, in search of a "happy medium" between black-box and non-black-box arguments, we study quantum supremacy relative to oracles in P/poly. Previous work implies that, if one-way functions exist, then quantum supremacy is possible relative to such oracles. We show, conversely, that some computational assumption is needed: if SampBPP=SampBQP and NP is in BPP, then quantum supremacy is impossible relative to oracles with small circuits.
机译:在不久的将来,可能会有具有40至50个高质量量子位的专用量子计算机。本文为如何使用此类设备展示“量子至上性”奠定了一般的理论基础:即,为了尽可能地自信地推翻扩展的“图灵论”论文这一目标,可以为某些任务提供明显的量子加速。首先,我们按照Google的Quantum AI小组最近提出的建议,研究了对随机量子电路的输出分布进行采样的难度。我们表明存在一个自然的平均情况硬度假设,该假设与采样无关,但意味着没有多项式时间经典算法可以通过统计采样程序输出通过的统计检验。与以前的工作(例如,关于BosonSampling和IQP的工作)相比,主要优势在于我们现在可以直接谈论观察到的输出,而不是谈论被抽样的分布。其次,为了反驳我们的硬度假设,我们给出了一种新算法,该算法受Savitch定理启发,用于模拟在多项式空间和m ^ O(n)时间中具有n个量子位和m个门的一般量子电路。然后,我们讨论为什么此算法和其他已知算法无法反驳我们的假设。第三,解决了Aaronson和Arkhipov的一个开放问题,我们证明任何强量子至上定理-“如果近似量子采样在经典上很容易,则多项式层次崩溃”的形式-必须是非相对论的。这与精确采样的情况形成鲜明对比。第四,驳斥了Aaronson和Ambainis的一个猜想,我们证明了Fourier抽样问题在量子和随机查询复杂度之间实现了恒定与线性的分离。第五,为了寻找介于黑匣子和非黑匣子之间的“快乐媒介”,我们研究了相对于P / poly中oracle的量子至上性。先前的工作表明,如果存在单向函数,则相对于此类预言系统而言,量子至上是可能的。相反,我们表明需要一些计算假设:如果SampBPP = SampBQP且NP在BPP中,则相对于带有小电路的神谕来说,量子至上是不可能的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号