...
首页> 外文期刊>LIPIcs : Leibniz International Proceedings in Informatics >A Normalizing Computation Rule for Propositional Extensionality in Higher-Order Minimal Logic
【24h】

A Normalizing Computation Rule for Propositional Extensionality in Higher-Order Minimal Logic

机译:高阶最小逻辑中命题可扩展性的归一化计算规则

获取原文
           

摘要

The univalence axiom expresses the principle of extensionality for dependent type theory. However, if we simply add the univalence axiom to type theory, then we lose the property of canonicity - that every closed term computes to a canonical form. A computation becomes "stuck" when it reaches the point that it needs to evaluate a proof term that is an application of the univalence axiom. So we wish to find a way to compute with the univalence axiom. While this problem has been solved with the formulation of cubical type theory, where the computations are expressed using a nominal extension of lambda-calculus, it may be interesting to explore alternative solutions, which do not require such an extension.As a first step, we present here a system of propositional higher-order minimal logic (PHOML). There are three kinds of typing judgement in PHOML. There are terms which inhabit types, which are the simple types over Omega. There are proofs which inhabit propositions, which are the terms of type Omega. The canonical propositions are those constructed from false by implication. Thirdly, there are paths which inhabit equations M =_A N, where M and N are terms of type A. There are two ways to prove an equality: reflexivity, and propositional extensionality - logically equivalent propositions are equal. This system allows for some definitional equalities that are not present in cubical type theory, namely that transport along the trivial path is identity.We present a call-by-name reduction relation for this system, and prove that the system satisfies canonicity: every closed typable term head-reduces to a canonical form. This work has been formalised in Agda.
机译:一元性公理表达了依赖类型理论的可扩展性原理。但是,如果仅将单性公理添加到类型理论中,那么我们将失去正则性的性质-每个封闭项都会计算为正则形式。当计算达到需要评估作为无偶性公理的应用的证明项时,该计算就变得“卡住了”。因此,我们希望找到一种方法来计算单调公理。虽然已经通过三次式理论的提出解决了这个问题,但其中的计算是使用lambda微积分的名义扩展表示的,但探索不需要这种扩展的替代解决方案可能会很有趣。我们在这里提出一个命题高阶最小逻辑(PHOML)系统。 PHOML中有三种类型的判断。存在居住类型的术语,这是Omega上的简单类型。有证明存在于命题中的证明,这是欧米茄类型的术语。规范命题是通过暗示从错误中构造出来的。第三,存在着包含方程M = _A N的路径,其中M和N是类型A的项。有两种证明相等的方式:自反性和命题可扩展性-逻辑上相等的命题相等。该系统允许在立方类型理论中不存在的一些定义相等性,即沿平凡路径的运输是同一性。我们为该系统提供了一个按名称的归约关系,并证明该系统满足典型性:每个封闭典型的术语head简化为规范形式。这项工作已经在阿格达正式化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号