...
首页> 外文期刊>LIPIcs : Leibniz International Proceedings in Informatics >The Power of Block-Encoded Matrix Powers: Improved Regression Techniques via Faster Hamiltonian Simulation
【24h】

The Power of Block-Encoded Matrix Powers: Improved Regression Techniques via Faster Hamiltonian Simulation

机译:块编码矩阵幂的幂:通过更快的汉密尔顿模拟改进的回归技术

获取原文
           

摘要

We apply the framework of block-encodings, introduced by Low and Chuang (under the name standard-form), to the study of quantum machine learning algorithms and derive general results that are applicable to a variety of input models, including sparse matrix oracles and matrices stored in a data structure. We develop several tools within the block-encoding framework, such as singular value estimation of a block-encoded matrix, and quantum linear system solvers using block-encodings. The presented results give new techniques for Hamiltonian simulation of non-sparse matrices, which could be relevant for certain quantum chemistry applications, and which in turn imply an exponential improvement in the dependence on precision in quantum linear systems solvers for non-sparse matrices. In addition, we develop a technique of variable-time amplitude estimation, based on Ambainis' variable-time amplitude amplification technique, which we are also able to apply within the framework. As applications, we design the following algorithms: (1) a quantum algorithm for the quantum weighted least squares problem, exhibiting a 6-th power improvement in the dependence on the condition number and an exponential improvement in the dependence on the precision over the previous best algorithm of Kerenidis and Prakash; (2) the first quantum algorithm for the quantum generalized least squares problem; and (3) quantum algorithms for estimating electrical-network quantities, including effective resistance and dissipated power, improving upon previous work.
机译:我们将Low和Chuang(以标准形式)引入的块编码框架应用于量子机器学习算法的研究,并得出适用于各种输入模型的通用结果,包括稀疏矩阵预言和矩阵存储在数据结构中。我们在块编码框架内开发了几种工具,例如,块编码矩阵的奇异值估计以及使用块编码的量子线性系统求解器。提出的结果为非稀疏矩阵的汉密尔顿模拟提供了新技术,该技术可能与某些量子化学应用有关,进而暗示了非稀疏矩阵的量子线性系统求解器对精度的指数级提高。此外,我们基于Ambainis的可变时振幅放大技术开发了可变时振幅估计技术,也可以在框架内应用。作为应用,我们设计以下算法:(1)一种用于量子加权最小二乘问题的量子算法,与前一个条件相比,它对条件数的依赖表现出六次幂改进,而对精度的依赖则呈现出指数改进。 Kerenidis和Prakash的最佳算法; (2)量子广义最小二乘问题的第一种量子算法; (3)用于估计电网数量(包括有效电阻和耗散功率)的量子算法,在先前工作的基础上有所改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号