首页> 外文期刊>Nanomedicine research journal. >A First-Principles Study of the Interaction of Aspirin with Nitrogen-Doped TiO2 Anatase Nanoparticles
【24h】

A First-Principles Study of the Interaction of Aspirin with Nitrogen-Doped TiO2 Anatase Nanoparticles

机译:阿司匹林与氮掺杂的TiO2锐钛矿纳米粒子相互作用的第一性原理研究

获取原文
       

摘要

Objective(s): First-principles calculations have been carried out to investigate the interaction of aspirin molecule with nitrogen-doped TiO2 anatase nanoparticles using the density functional theory method in order to fully exploit the biosensing capabilities of TiO2 particles. Methods: For this purpose, we have mainly studied the adsorption of the aspirin molecule on the fivefold coordinated titanium atom site of the TiO2 nanoparticles because of the more reactivity of this site in comparison with the other sits. The complex systems consisting of the aspirin molecule positioned toward the undoped and nitrogen-doped nanoparticles have been relaxed geometrically. Results: The obtained results include structural parameters such as bond lengths and energetic of the systems. The electronic structure and its variations resulting from the adsorption process, including the density of states, molecular orbitals and the Mulliken charge transfer analysis have been discussed. We found that the adsorption of aspirin molecule on the nitrogen-doped TiO2 nanoparticles is energetically more favorable than the adsorption on the undoped ones. Conclusions: These results thus provide a theoretical basis and overall understanding on the interaction of TiO2 nanoparticles with aspirin molecule for applications in modeling of efficient nanomedicine carriers, biosensors and drug delivery purposes.
机译:目的:利用密度泛函理论方法进行了第一性原理计算,以研究阿司匹林分子与氮掺杂的TiO2锐钛矿纳米颗粒之间的相互作用,以便充分利用TiO2颗粒的生物传感能力。方法:为此,我们主要研究了阿司匹林分子在TiO2纳米颗粒的五重配位钛原子位点上的吸附,因为该位点与其他位置相比具有更高的反应性。由朝向未掺杂和氮掺杂的纳米粒子定位的阿司匹林分子组成的复杂系统在几何上已经松弛。结果:获得的结果包括结构参数,例如键长和系统的能量。讨论了由吸附过程引起的电子结构及其变化,包括状态密度,分子轨道和Mulliken电荷转移分析。我们发现,阿司匹林分子在氮掺杂的TiO2纳米颗粒上的吸附在能量上比在未掺杂的纳米颗粒上的吸附更有利。结论:这些结果为TiO2纳米颗粒与阿司匹林分子的相互作用提供了理论基础和全面的了解,可用于建模高效的纳米药物载体,生物传感器和药物递送目的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号