...
首页> 外文期刊>Laboratory investigation >Nephron-deficient Fvb mice develop rapidly progressive renal failure and heavy albuminuria involving excess glomerular GLUT1 and VEGF
【24h】

Nephron-deficient Fvb mice develop rapidly progressive renal failure and heavy albuminuria involving excess glomerular GLUT1 and VEGF

机译:缺乏肾小球的Fvb小鼠发展迅速的进行性肾功能衰竭和重度蛋白尿,涉及过多的肾小球GLUT1和VEGF

获取原文

摘要

Reduced nephron numbers may predispose to renal failure. We hypothesized that glucose transporters (GLUTs) may contribute to progression of the renal disease, as GLUTs have been implicated in diabetic glomerulosclerosis and hypertensive renal disease with mesangial cell (MC) stretch. The Os (oligosyndactyly) allele that typically reduces nephron number by ~50%, was repeatedly backcrossed from ROP (Ra/+ (ragged), Os/+ (oligosyndactyly), and Pt/+ (pintail)) Os/+ mice more than six times into the Fvb mouse background to obtain Os/+ and +/+ mice with the Fvb background for study. Glomerular function, GLUT1, signaling, albumin excretion, and structural and ultrastructural changes were assessed. The FvbROP Os/+ mice (Fvb background) exhibited increased glomerular GLUT1, glucose uptake, VEGF, glomerular hypertrophy, hyperfiltration, extensive podocyte foot process effacement, marked albuminuria, severe extracellular matrix (ECM) protein deposition, and rapidly progressive renal failure leading to their early demise. Glomerular GLUT1 was increased 2.7-fold in the FvbROP Os/+ mice vs controls at 4 weeks of age, and glucose uptake was increased 2.7-fold. These changes were associated with the activation of glomerular PKCβ1 and NF-κB p50 which contribute to ECM accumulation. The cyclic mechanical stretch of MCs in vitro, used as a model for increased MC stretch in vivo, reproduced increased GLUT1 at 48?h, a stimulus for increased VEGF expression which followed at 72?h. VEGF was also shown to act in a positive feedback manner on MC GLUT1, increasing GLUT1 expression, glucose uptake and fibronectin (FN) accumulation in vitro, whereas antisense suppression of GLUT1 largely blocked FN upregulation by VEGF. The FvbROP Os/+ mice exhibited an early increase in glomerular GLUT1 leading to increased glomerular glucose uptake PKCβ1, and NF-κB activation, with excess ECM accumulation. A GLUT1–VEGF–GLUT1 positive feedback loop may play a key role in contributing to renal disease in this model of nondiabetic glomerulosclerosis.
机译:肾单位数量减少可能导致肾功能衰竭。我们假设葡萄糖转运蛋白(GLUTs)可能有助于肾脏疾病的进展,因为GLUTs与糖尿病肾小球硬化症和伴有肾小球膜细胞(MC)的高血压性肾脏疾病有关。通常将肾单位数目降低约50%的Os(寡突触)等位基因与ROP(Ra / +(参差),Os / +(寡突)和Pt / +(长尾))Os / +小鼠反复回交。将其转入Fvb小鼠背景的六倍以上,以获得具有Fvb背景的Os / +和+ / +小鼠进行研究。评估肾小球功能,GLUT1,信号传导,白蛋白排泄以及结构和超微结构变化。 FvbROP Os / +小鼠(Fvb背景)表现出肾小球GLUT1,葡萄糖摄取,VEGF,肾小球肥大,过度过滤,足细胞足突消失,明显的白蛋白尿,严重的细胞外基质(ECM)蛋白沉积以及迅速进行性肾衰竭,导致他们的早逝。与4周龄对照组相比,FvbROP Os / +小鼠的肾小球GLUT1增加了2.7倍,葡萄糖摄取增加了2.7倍。这些变化与肾小球PKCβ1和NF-κBp50的激活有关,这些激活有助于ECM的积累。体外MCs的循环机械拉伸,用作体内MC拉伸增加的模型,在48?h时复制了增加的GLUT1,这是在72?h后增加VEGF表达的刺激。 VEGF还显示出对MC GLUT1产生正反馈作用,在体外增加GLUT1表达,葡萄糖摄取和纤连蛋白(FN)的积累,而GLUT1的反义抑制在很大程度上阻止了VEGF对FN的上调。 FvbROP Os / +小鼠表现出肾小球GLUT1的早期增加,导致肾小球葡萄糖摄取PKCβ1和NF-κB激活增加,并且ECM积累过多。在这种非糖尿病性肾小球硬化模型中,GLUT1-VEGF-GLUT1阳性反馈回路可能在导致肾脏疾病中起关键作用。

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号