首页> 外文期刊>Nuclear engineering and technology >Validation of Computational Fluid Dynamics Calculation Using Rossendorf Coolant Mixing Model Flow Measurements in Primary Loop of Coolant in a Pressurized Water Reactor Model
【24h】

Validation of Computational Fluid Dynamics Calculation Using Rossendorf Coolant Mixing Model Flow Measurements in Primary Loop of Coolant in a Pressurized Water Reactor Model

机译:使用Rossendorf冷却剂混合模型的计算流体力学计算的验证,在压水堆模型中,冷却剂主回路中的流量测量

获取原文
       

摘要

The aim of this work is to simulate the thermohydraulic consequences of a main steam line break and to compare the obtained results with Rossendorf Coolant Mixing Model (ROCOM) 1.1 experimental results. The objective is to utilize data from steady-state mixing experiments and computational fluid dynamics (CFD) calculations to determine the flow distribution and the effect of thermal mixing phenomena in the primary loops for the improvement of normal operation conditions and structural integrity assessment of pressurized water reactors. The numerical model of ROCOM was developed using the FLUENT code. The positions of the inlet and outlet boundary conditions and the distribution of detailed velocity/turbulence parameters were determined by preliminary calculations. The temperature fields of transient calculation were averaged in time and compared with time-averaged experimental data. The perforated barrel under the core inlet homogenizes the flow, and therefore, a uniform temperature distribution is formed in the pressure vessel bottom. The calculated and measured values of lowest temperature were equal . The inlet temperature is an essential parameter for safety assessment. The calculation predicts precisely the experimental results at the core inlet central region. CFD results showed a good agreement (both qualitatively and quantitatively) with experimental results.
机译:这项工作的目的是模拟主蒸汽管线中断的热工水力后果,并将获得的结果与Rossendorf冷却液混合模型(ROCOM)1.1实验结果进行比较。目的是利用稳态混合实验和计算流体力学(CFD)计算得出的数据来确定主回路中的流量分布和热混合现象的影响,从而改善正常工作条件并对加压水进行结构完整性评估反应堆。使用FLUENT代码开发了ROCOM的数值模型。通过初步计算确定了入口和出口边界条件的位置以及详细的速度/湍流参数的分布。及时计算瞬态计算的温度场,并将其与时均实验数据进行比较。岩心入口下方的多孔桶使流量均匀,因此,在压力容器底部形成了均匀的温度分布。最低温度的计算值与测量值相等。入口温度是安全评估的重要参数。该计算精确地预测了岩心入口中心区域的实验结果。 CFD结果显示(在定性和定量上)与实验结果吻合良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号