首页> 外文期刊>Nuclear Materials and Energy >Structural evolution of tungsten surface exposed to sequential low-energy helium ion irradiation and transient heat loading
【24h】

Structural evolution of tungsten surface exposed to sequential low-energy helium ion irradiation and transient heat loading

机译:连续低能氦离子辐照和瞬态热负荷作用下钨表面的结构演变

获取原文
           

摘要

Highlights ? Surface melting and mass loss by ELM-like heat loading were measured on W fuzz. ? Both laser and electron beam loading were used to replicate type-I ELMs. ? Surface melting on fuzz samples is driven by the local conglomeration of W fibers. ? Increased penetration depth of electron beam reduces degree of surface melting. ? In situ mass loss measurements reveal exponential increase in particle ejection. Abstract Structural damage due to high flux particle irradiation can result in significant changes to the thermal strength of the plasma facing component surface (PFC) during off-normal events in a tokamak. Low-energy He + ion irradiation of tungsten (W), which is currently the leading candidate material for future PFCs, can result in the development of a fiber form nanostructure, known as “fuzz”. In the current study, mirror-finished W foils were exposed to 100eV He + ion irradiation at a fluence of 2.6?×10 24 ionsm ?2 and a temperature of 1200K. Then, samples were exposed to two different types of pulsed heat loading meant to replicate type-I edge-localized mode (ELM) heating at varying energy densities and base temperatures. Millisecond (ms) laser exposure done at 1200K revealed a reduction in fuzz density with increasing energy density due to the conglomeration and local melting of W fibers. At higher energy densities (~ 1.5MJm ?2 ), RT exposures resulted in surface cracking, while 1200K exposures resulted in surface roughening, demonstrating the role of base temperature on the crack formation in W. Electron beam heating presented similar trends in surface morphology evolution; a higher penetration depth led to reduced melt motion and plasticity. In situ mass loss measurements obtained via a quartz crystal microbalance (QCM) found an exponential increase in particle emission for RT exposures, while the prevalence of melting from 1200K exposures yielded no observable trend.
机译:强调 ?在W绒毛上测量由类似ELM的热负荷引起的表面熔化和质量损失。 ?激光和电子束加载都用于复制I型ELM。 ?绒毛样品的表面熔化是由W纤维的局部聚集驱动的。 ?电子束穿透深度的增加降低了表面熔化的程度。 ?原位质量损失测量揭示了粒子喷射的指数增长。摘要由于高通量粒子辐照引起的结构破坏会导致在托卡马克异常活动期间等离子体面对部件表面(PFC)的热强度发生重大变化。钨(W)的低能He +离子辐射目前是未来PFC的主要候选材料,它可以导致纤维形式的纳米结构(称为“绒毛”)的发展。在当前的研究中,镜面抛光的W箔片在2.6?×10 24 ionsm?2的通量和1200K的温度下受到100eV He +离子辐照。然后,将样品暴露于两种不同类型的脉冲热负荷下,这意味着可以在不同的能量密度和基本温度下复制I型边缘定位模式(ELM)加热。由于W纤维的聚集和局部熔化,在1200K进行的毫秒(ms)激光曝光显示绒毛密度降低,能量密度增加。在较高的能量密度(〜1.5MJm?2)下,RT暴露导致表面开裂,而1200K暴露导致表面粗糙,这证明了基温对W中裂纹形成的作用。电子束加热在表面形态演变中表现出相似的趋势;较高的穿透深度导致熔体运动和可塑性降低。通过石英晶体微天平(QCM)进行的原位质量损失测量发现,RT暴露的颗粒排放呈指数增长,而1200K暴露引起的熔化流行没有明显的趋势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号