...
首页> 外文期刊>Nuclear Materials and Energy >Investigation of damages induced by ITER-relevant heat loads during massive gas injections on Beryllium
【24h】

Investigation of damages induced by ITER-relevant heat loads during massive gas injections on Beryllium

机译:大量气体注入铍时,由ITER相关热负荷引起的损伤研究

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Highlights ? Beryllium specimens were subjected to ITER relevant massive gas injection like heat loads. ? All of the applied loading conditions led to noticeable surface modifications. ? In the worst case, a crater like morphology with molten beryllium and an affected depth of ~340 μm formed in the loaded area. ? The level of damage was highly depending on the absorbed power density, pulse duration, and pulse number. ? The formation of beryllium oxide can accelerate the MGI induced surface destruction. ? The cyclic melting of beryllium can enable a thinning mechanism of the armor tiles. Abstract Massive gas injections (MGIs) will be used in ITER to mitigate the strong damaging effect of full performance plasma disruptions on the plasma facing components. The MGI method transforms the stored plasma energy to radiation that is spread across the vacuum vessel with poloidal and toroidal asymmetries. This work investigated the impact of MGI like heat loading on the first wall armor material beryllium. ITER-relevant power densities of 90-260 MW m ?2 in combination with pulse durations of 5-10 ms were exerted onto the S-65 grade beryllium specimens in the electron beam facility JUDITH 1. All tested loading conditions led to noticeable surface morphology changes and in the expected worst case scenario, a crater with thermally induced cracks with a depth of up to ~340 μm formed in the loaded area. The level of destruction in the loaded area was strongly dependent on the pulse number but also on the formation of beryllium oxide. The cyclic melting of beryllium could lead to an armor thinning mechanism under the presence of melt motion driving forces such as surface tension, magnetic forces, and plasma pressure.
机译:强调 ?铍样品经受了ITER相关的大量气体注入,如热负荷。 ?所有施加的载荷条件导致明显的表面改性。 ?在最坏的情况下,在加载区域会形成类似铍的火山口形态,受影响的深度约为340μm。 ?损坏程度在很大程度上取决于吸收的功率密度,脉冲持续时间和脉冲数。 ?氧化铍的形成可以加速MGI诱导的表面破坏。 ?铍的周期性熔化可使装甲砖变薄。摘要在ITER中将使用大规模气体注入(MGI)来减轻全功能等离子体破坏对面对等离子体的组件的强烈破坏作用。 MGI方法将存储的等离子体能量转换成辐射,该辐射以极向和环形不对称性分布在整个真空容器中。这项工作研究了MGI(如热负荷)对第一壁铠装材料铍的影响。在电子束装置JUDITH 1中,将与ITER相关的90-260 MW m?2的功率密度和5-10 ms的脉冲持续时间施加到S-65级铍样品上。所有测试的负载条件均导致明显的表面形态发生变化,并且在最坏的情况下(预期的最坏情况下),在加载区域中会形成带有热裂纹的火山口,其深度可达〜340μm。加载区域的破坏程度在很大程度上取决于脉冲数,但也取决于氧化铍的形成。在诸如表面张力,磁力和等离子压力之类的熔体运动驱动力的存在下,铍的周期性熔化可能导致装甲薄化机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号