首页> 外文期刊>Nonlinear Processes in Geophysics Discussions >On the possibility of wave-induced chaos in a sheared, stably stratified fluid layer
【24h】

On the possibility of wave-induced chaos in a sheared, stably stratified fluid layer

机译:关于在稳定的分层剪切流体层中波引起的混沌的可能性

获取原文
获取外文期刊封面目录资料

摘要

Shear flow in a stable stratification provides a waveguide for internal gravity waves. In the inviscid approximation, internal gravity waves are known to be unstable below a threshold in Richardson number. However, in a viscous fluid, at low enough Reynolds number, this threshold recedes to Ri = 0. Nevertheless, even the slightest viscosity strongly damps internal gravity waves when the Richardson number is small (shear forces dominate buoyant forces). In this paper we address the dynamics that approximately govern wave propagation when the Richardson number is small and the fluid is viscous. When Ri 1, to a first approximation, the transport equations for thermal energy and momentum decouple. Thus, a large amplitude temperature wave then has little effect on the fluid velocity. Under such conditions in the atmosphere, a small amplitude "turbulent burst" is observed, transporting momentum rapidly and seemingly randomly. A regular perturbation scheme from a base state of a passing temperature wave and no velocity disturbance is developed here. Small thermal energy convection-momentum transport coupling is taken into account. The elements of forcing, wave dispersion, (turbulent) dissipation under strong shearing, and weak nonlinearity lead to this dynamical equation for the amplitude A of the turbulent burst in velocity: Aξ = λ1A + λ2Aξξ + λ3Aξξξ + λ4AAξ + b(ξ) where ξ is the coordinate of the rest frame of the passing temperature wave whose horizontal profile is b(ξ). The parameters λi are constants that depend on the Reynolds number. The above dynamical system is know to have limit cycle and chaotic attrators when forcing is sinusoidal and wave attenuation negligible.
机译:稳定分层中的剪切流为内部重力波提供了波导。在无粘性近似中,已知内部重力波在Richardson数阈值以下不稳定。但是,在粘性流体中,在足够低的雷诺数下,该阈值会退回到Ri =0。尽管如此,当Richardson数小时(剪切力主导浮力),即使是最细微的粘度也会极大地衰减内部重力波。在本文中,我们讨论当理查森数小且流体粘性时近似控制波传播的动力学。当Ri 1时,近似为一阶,热能和动量的输运方程解耦。因此,大幅度的温度波对流体速度的影响很小。在这样的大气条件下,观察到一个小幅度的“湍流爆发”,迅速且看似随机地传输动量。在此,根据通过的温度波的基本状态并且没有速度扰动来制定规则的摄动方案。考虑了小的热能对流-动量传输耦合。强迫,波浪弥散,在强剪切作用下的(湍流)耗散和弱非线性因素导致了湍流爆发速度A的动力学方程:Aξ=λ1A+λ2Aξξ+λ3Aξξξ+λ4AAξ+ b(ξ)其中ξ是水平温度为b(ξ)的通过温度波的其余帧的坐标。参数λi是取决于雷诺数的常数。当强迫为正弦波且波衰减可忽略不计时,上述动力学系统具有极限循环和混沌吸引子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号