首页> 外文期刊>Nonlinear Processes in Geophysics Discussions >A general theory on frequency and time–frequency analysis of irregularly sampled time series based on projection methods – Part?2: Extension to time–frequency analysis
【24h】

A general theory on frequency and time–frequency analysis of irregularly sampled time series based on projection methods – Part?2: Extension to time–frequency analysis

机译:基于投影方法的不规则采样时间序列频率和时频分析的一般理论–第2部分:时频分析的扩展

获取原文
       

摘要

Geophysical time series are sometimes sampled irregularly along the time axis. The situation is particularly frequent in palaeoclimatology. Yet, there is so far no general framework for handling the continuous wavelet transform when the time sampling is irregular. Here we provide such a framework. To this end, we define the scalogram as the continuous-wavelet-transform equivalent of the extended Lomb–Scargle periodogram defined in Part?1 of this study (Lenoir and Crucifix, 2018). The signal being analysed is modelled as the sum of a locally periodic component in the time–frequency plane, a polynomial trend, and a background noise. The mother wavelet adopted here is the Morlet wavelet classically used in geophysical applications. The background noise model is a stationary Gaussian continuous autoregressive-moving-average (CARMA) process, which is more general than the traditional Gaussian white and red noise processes. The scalogram is smoothed by averaging over neighbouring times in order to reduce its variance. The Shannon–Nyquist exclusion zone is however defined as the area corrupted by local aliasing issues. The local amplitude in the time–frequency plane is then estimated with least-squares methods. We also derive an approximate formula linking the squared amplitude and the scalogram. Based on this property, we define a new analysis tool: the weighted smoothed scalogram, which we recommend for most analyses. The estimated signal amplitude also gives access to band and ridge filtering. Finally, we design a test of significance for the weighted smoothed scalogram against the stationary Gaussian CARMA background noise, and provide algorithms for computing confidence levels, either analytically or with Monte Carlo Markov chain methods. All the analysis tools presented in this article are available to the reader in the Python package WAVEPAL.
机译:有时沿时间轴不规则地采样地球物理时间序列。在古气候学中,这种情况尤其常见。但是,到目前为止,在时间采样不规则时,尚无用于处理连续小波变换的通用框架。在这里,我们提供了这样的框架。为此,我们将比例尺定义为与本研究的第1部分中定义的扩展Lomb-Scargle周期图等效的连续小波变换等效项(Lenoir和Crucifix,2018年)。被分析的信号被建模为时频平面中局部周期分量,多项式趋势和背景噪声之和。这里采用的母子波是地球物理应用中经典使用的Morlet小波。背景噪声模型是平稳的高斯连续自回归移动平均(CARMA)过程,比传统的高斯白噪声和红噪声过程更通用。通过对相邻时间取平均值来对比例图进行平滑处理,以减小其方差。但是,香农–奈奎斯特禁区被定义为因局部混叠问题而损坏的区域。然后使用最小二乘法估计时频平面上的局部振幅。我们还导出了一个近似公式,该公式将振幅平方和比例尺联系起来。基于此属性,我们定义了一个新的分析工具:加权平滑比例尺图,我们建议将其用于大多数分析。估计的信号幅度还可以访问带和脊滤波。最后,我们针对平稳高斯CARMA背景噪声设计了加权平滑比例图的显着性检验,并提供了用于计算置信度的算法,无论是解析方法还是蒙特卡洛·马尔可夫链方法。读者可以通过Python软件包WAVEPAL获得本文中介绍的所有分析工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号