...
首页> 外文期刊>Neural regeneration research >Microelectronic neural bridging of toad nerves to restore leg function
【24h】

Microelectronic neural bridging of toad nerves to restore leg function

机译:蟾蜍神经的微电子神经桥接可恢复腿部功能

获取原文
           

摘要

The present study used a microelectronic neural bridge comprised of electrode arrays for neural signal detection, functional electrical stimulation, and a microelectronic circuit including signal amplifying, processing, and functional electrical stimulation to bridge two separate nerves, and to restore the lost function of one nerve. The left leg of one spinal toad was subjected to external mechanical stimulation and functional electrical stimulation driving. The function of the left leg of one spinal toad was regenerated to the corresponding leg of another spinal toad using a microelectronic neural bridge. Oscilloscope tracings showed that the electromyographic signals from controlled spinal toads were generated by neural signals that controlled the spinal toad, and there was a delay between signals. This study demonstrates that microelectronic neural bridging can be used to restore neural function between different injured nerves. Research Highlights (1) A microelectronic neural bridge was built comprising electrode arrays for neural signal detection, functional electrical stimulation, and a microelectronic circuit. (2) The spinal toad animal model does not inhibit generation and transmission of neural signals or inhibit neural signals generated by functional electrical stimulation. The entire body can maintain biological activity free of control by the brain. (3) With the help of microelectronic neural bridge, the function of the left leg of one spinal toad can restore the function on the corresponding leg of another spinal toad.
机译:本研究使用了由电极阵列组成的微电子神经桥,用于神经信号检测,功能性电刺激以及包括信号放大,处理和功能性电刺激的微电子电路,以桥接两条分离的神经,并恢复一条神经的丧失功能。 。一只蟾蜍的左腿受到外部机械刺激和功能性电刺激驱动。使用微电子神经桥将一个脊柱蟾蜍的左腿的功能再生为另一个脊柱蟾蜍的对应腿。示波器跟踪显示,受控蟾蜍的肌电信号是由控制蟾蜍的神经信号产生的,并且信号之间存在延迟。这项研究表明,微电子神经桥接可用于恢复不同受伤神经之间的神经功能。研究重点(1)建立了一个微电子神经桥,包括用于神经信号检测,功能性电刺激和微电子电路的电极阵列。 (2)蟾蜍动物模型不抑制神经信号的产生和传递,也不抑制功能性电刺激产生的神经信号。整个身体可以维持不受大脑控制的生物活动。 (3)借助微电子神经桥,一个脊柱蟾蜍左腿的功能可以恢复另一脊柱蟾蜍对应腿的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号