...
首页> 外文期刊>Microbial Biotechnology >Evolutionary engineering of a glycerol‐3‐phosphate dehydrogenase‐negative, acetate‐reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations
【24h】

Evolutionary engineering of a glycerol‐3‐phosphate dehydrogenase‐negative, acetate‐reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations

机译:甘油三磷酸脱氢酶阴性,乙酸还原型酿酒酵母菌株的进化工程可实现高葡萄糖浓度下的厌氧生长

获取原文
           

摘要

SummaryGlycerol production by Saccharomyces cerevisiae, which is required for redox-cofactor balancing in anaerobic cultures, causes yield reduction in industrial bioethanol production. Recently, glycerol formation in anaerobic S. cerevisiae cultures was eliminated by expressing Escherichia coli (acetylating) acetaldehyde dehydrogenase (encoded by mhpF) and simultaneously deleting the GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase, thus coupling NADH reoxidation to reduction of acetate to ethanol. Gpd– strains are, however, sensitive to high sugar concentrations, which complicates industrial implementation of this metabolic engineering concept. In this study, laboratory evolution was used to improve osmotolerance of a Gpd– mhpF-expressing S. cerevisiae strain. Serial batch cultivation at increasing osmotic pressure enabled isolation of an evolved strain that grew anaerobically at 1 M glucose, at a specific growth rate of 0.12 h−1. The evolved strain produced glycerol at low concentrations (0.64 ± 0.33 g l−1). However, these glycerol concentrations were below 10% of those observed with a Gpd+ reference strain. Consequently, the ethanol yield on sugar increased from 79% of the theoretical maximum in the reference strain to 92% for the evolved strains. Genetic analysis indicated that osmotolerance under aerobic conditions required a single dominant chromosomal mutation, and one further mutation in the plasmid-borne mhpF gene for anaerobic growth.
机译:总结酿酒酵母生产甘油是厌氧培养中氧化还原-辅因子平衡所必需的,导致工业生物乙醇生产中的收率降低。最近,通过表达大肠杆菌(乙酰化)乙醛脱氢酶(由mhpF编码)并同时删除编码3-磷酸甘油脱氢酶的GPD1和GPD2基因,消除了厌氧啤酒酵母培养物中的甘油形成,从而将NADH重氧化与乙酸还原反应耦合乙醇。然而,Gpd – 菌株对高糖浓度敏感,这使这种代谢工程概念的工业实施变得复杂。在这项研究中,实验室的发展被用来提高表达Gpd – mhpF的酿酒酵母菌株的渗透耐受性。在增加的渗透压下进行连续分批培养能够分离出在1 M葡萄糖下厌氧生长的进化菌株,其比生长速率为0.12 h -1 。进化后的菌株产生低浓度的甘油(0.64±±0.33 g l -1 )。但是,这些甘油浓度低于使用Gpd + 参考菌株观察到的甘油浓度的10%。因此,糖的乙醇产率从参考菌株的理论最大值的79%增加到进化菌株的92%。遗传分析表明,在需氧条件下的渗透耐受性要求单个显性染色体突变,以及质粒携带的mhpF基因中的一个进一步突变才能进行厌氧生长。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号