首页> 美国卫生研究院文献>Microbial Biotechnology >Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations
【2h】

Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations

机译:甘油3磷酸脱氢酶阴性乙酸还原型酿酒酵母菌株的进化工程能够在高葡萄糖浓度下实现厌氧生长

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Glycerol production by Saccharomyces cerevisiae, which is required for redox-cofactor balancing in anaerobic cultures, causes yield reduction in industrial bioethanol production. Recently, glycerol formation in anaerobic S. cerevisiae cultures was eliminated by expressing Escherichia coli (acetylating) acetaldehyde dehydrogenase (encoded by mhpF) and simultaneously deleting the GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase, thus coupling NADH reoxidation to reduction of acetate to ethanol. Gpd strains are, however, sensitive to high sugar concentrations, which complicates industrial implementation of this metabolic engineering concept. In this study, laboratory evolution was used to improve osmotolerance of a Gpd mhpF-expressing S. cerevisiae strain. Serial batch cultivation at increasing osmotic pressure enabled isolation of an evolved strain that grew anaerobically at 1 M glucose, at a specific growth rate of 0.12 h−1. The evolved strain produced glycerol at low concentrations (0.64 ± 0.33 g l−1). However, these glycerol concentrations were below 10% of those observed with a Gpd+ reference strain. Consequently, the ethanol yield on sugar increased from 79% of the theoretical maximum in the reference strain to 92% for the evolved strains. Genetic analysis indicated that osmotolerance under aerobic conditions required a single dominant chromosomal mutation, and one further mutation in the plasmid-borne mhpF gene for anaerobic growth.
机译:啤酒酵母生产的甘油是厌氧培养中氧化还原-辅因子平衡所必需的,导致工业生物乙醇生产中的收率降低。最近,通过表达大肠杆菌(乙酰化)乙醛脱氢酶(由mhpF编码)并同时删除编码3-磷酸甘油脱氢酶的GPD1和GPD2基因,消除了厌氧啤酒酵母培养物中的甘油形成,从而使NADH重氧化与乙酸还原反应耦合乙醇。然而,Gpd 菌株对高糖浓度敏感,这使这种代谢工程概念的工业实施变得复杂。在这项研究中,实验室的发展被用来提高表达MpFf的Gpd 酿酒酵母菌株的渗透耐受性。在增加的渗透压下进行连续分批培养能够分离出在1 M葡萄糖下厌氧生长的进化菌株,其特定生长速率为0.12 h -1 。进化后的菌株产生低浓度的甘油(0.64±0.33 g l -1 )。然而,这些甘油浓度低于参考菌株Gpd + 所观察到的浓度的10%。因此,糖的乙醇产率从参考菌株的理论最大值的79%增加到进化菌株的92%。遗传分析表明,有氧条件下的渗透耐受性要求单个显性染色体突变,以及质粒携带的mhpF基因的另一个突变以实现厌氧生长。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号