...
首页> 外文期刊>Microbial Cell Factories >Modification of glucose import capacity in Escherichia coli: physiologic consequences and utility for improving DNA vaccine production
【24h】

Modification of glucose import capacity in Escherichia coli: physiologic consequences and utility for improving DNA vaccine production

机译:大肠杆菌中葡萄糖进口能力的改变:生理后果和改善DNA疫苗生产的效用

获取原文

摘要

Background The bacterium Escherichia coli can be grown employing various carbohydrates as sole carbon and energy source. Among them, glucose affords the highest growth rate. This sugar is nowadays widely employed as raw material in industrial fermentations. When E. coli grows in a medium containing non-limiting concentrations of glucose, a metabolic imbalance occurs whose main consequence is acetate secretion. The production of this toxic organic acid reduces strain productivity and viability. Solutions to this problem include reducing glucose concentration by substrate feeding strategies or the generation of mutant strains with impaired glucose import capacity. In this work, a collection of E. coli strains with inactive genes encoding proteins involved in glucose transport where generated to determine the effects of reduced glucose import capacity on growth rate, biomass yield, acetate and production of an experimental plasmid DNA vaccine (pHN). Results A group of 15 isogenic derivatives of E. coli W3110 were generated with single and multiple deletions of genes encoding glucose, mannose, beta-glucoside, maltose and N-acetylglucosamine components of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), as well as the galactose symporter and the Mgl galactose/glucose ABC transporter. These strains were characterized by growing them in mineral salts medium supplemented with 2.5 g/L glucose. Maximum specific rates of glucose consumption (qs) spanning from 1.33 to 0.32 g/g h were displayed by the group of mutants and W3110, which resulted in specific growth rates ranging from 0.65-0.18 h-1. Acetate accumulation was reduced or abolished in cultures with all mutant strains. W3110 and five selected mutant derivatives were transformed with pHN. A 3.2-fold increase in pHN yield on biomass was observed in cultures of a mutant strain with deletion of genes encoding the glucose and mannose PTS components, as well as Mgl. Conclusions The group of E. coli mutants generated in this study displayed a reduction or elimination of overflow metabolism and a linear correlation between qs and the maximum specific growth rate as well as the acetate production rate. By comparing DNA vaccine production parameters among some of these mutants, it was possible to identify a near-optimal glucose import rate value for this particular application. The strains employed in this study should be a useful resource for studying the effects of different predefined qs values on production capacity for various biotechnological products.
机译:背景技术可以利用各种碳水化合物作为唯一的碳和能源来培养大肠杆菌。其中,葡萄糖具有最高的生长速率。如今,这种糖被广泛用作工业发酵的原料。当大肠杆菌在含有非限制性浓度葡萄糖的培养基中生长时,会发生代谢失衡,其主要后果是乙酸盐的分泌。这种有毒有机酸的产生降低了菌株的生产力和生存能力。解决该问题的方法包括通过底物进料策略降低葡萄糖浓度或生成葡萄糖导入能力受损的突变菌株。在这项工作中,产生了具有编码葡萄糖转运蛋白的非活性基因的大肠杆菌菌株,以测定降低的葡萄糖进口量对生长速率,生物量产量,乙酸盐和实验质粒DNA疫苗(pHN)的影响。 。结果产生了一组15个大肠杆菌W3110的等基因衍生物,它们具有单个或多个缺失磷酸烯醇丙酮酸:糖磷酸转移酶系统(PTS)的葡萄糖,甘露糖,β-葡萄糖苷,麦芽糖和N-乙酰氨基葡萄糖成分的基因,以及半乳糖同向转运蛋白和Mgl半乳糖/葡萄糖ABC转运蛋白。这些菌株的特征是使其在添加了2.5 g / L葡萄糖的无机盐培养基中生长。突变体和W3110的最大葡萄糖消耗率(q s )在1.33至0.32 g / gh之间,其比生长率范围为0.65-0.18 h -1 。在所有突变菌株的培养物中,乙酸积累减少或消除。用pHN转化W3110和五个选定的突变体衍生物。在缺失编码葡萄糖和甘露糖PTS成分以及Mgl的基因的突变菌株的培养物中,观察到生物量pHN产量增加了3.2倍。结论本研究中产生的大肠杆菌突变体组显示出减少或消除了溢流代谢,并且q s 与最大比生长速率以及乙酸盐产生速率之间呈线性相关。通过比较其中一些突变体中的DNA疫苗生产参数,可以为该特定应用确定接近最佳的葡萄糖输入速率值。这项研究中使用的菌株应该是研究不同的预定q s 值对各种生物技术产品生产能力的影响的有用资源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号