首页> 外文期刊>Molecular pain >Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: towards a biophysical basis for neuropathic pain
【24h】

Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: towards a biophysical basis for neuropathic pain

机译:阴离子反转电位的降低颠覆了对椎板I神经元放电速率的抑制控制:朝着神经性疼痛的生物物理基础发展

获取原文
       

摘要

Background Reduction of the transmembrane chloride gradient in spinal lamina I neurons contributes to the cellular hyperexcitability producing allodynia and hyperalgesia after peripheral nerve injury. The resultant decrease in anion reversal potential (i.e. shift in Eanion to less negative potentials) reduces glycine/GABAA receptor-mediated hyperpolarization, but the large increase in membrane conductance caused by inhibitory input can nonetheless shunt concurrent excitatory input. Without knowing the relative contribution of hyperpolarization and shunting to inhibition's modulation of firing rate, it is difficult to predict how much net disinhibition results from reduction of Eanion. We therefore used a biophysically accurate lamina I neuron model to investigate quantitatively how changes in Eanion affect firing rate modulation. Results Simulations reveal that even a small reduction of Eanion compromises inhibitory control of firing rate because reduction of Eanion not only decreases glycine/GABAA receptor-mediated hyperpolarization, but can also indirectly compromise the capacity of shunting to reduce spiking. The latter effect occurs because shunting-mediated modulation of firing rate depends on a competition between two biophysical phenomena: shunting reduces depolarization, which translates into reduced spiking, but shunting also shortens the membrane time constant, which translates into faster membrane charging and increased spiking; the latter effect predominates when average depolarization is suprathreshold. Disinhibition therefore occurs as both hyperpolarization- and shunting-mediated modulation of firing rate are subverted by reduction of Eanion. Small reductions may be compensated for by increased glycine/GABAA receptor-mediated input, but the system decompensates (i.e. compensation fails) as reduction of Eanion exceeds a critical value. Hyperexcitability necessarily develops once disinhibition becomes incompensable. Furthermore, compensation by increased glycine/GABAA receptor-mediated input introduces instability into the system, rendering it increasingly prone to abrupt decompensation and even paradoxical excitation. Conclusion Reduction of Eanion dramatically compromises the inhibitory control of firing rate and, if compensation fails, is likely to contribute to the allodynia and hyperalgesia associated with neuropathic pain. These data help explain the relative intractability of neuropathic pain and illustrate how it is important to choose therapies not only based on disease mechanism, but based on quantitative understanding of that mechanism.
机译:背景脊髓椎板I神经元中跨膜氯化物梯度的降低有助于周围神经损伤后细胞过度兴奋,产生异常性疼痛和痛觉过敏。所产生的阴离子反转电位的降低(即,阴离子向负电势的转变)减少了甘氨酸/ GABAA受体介导的超极化,但由抑制性输入引起的膜电导的大幅增加仍可分流同时的兴奋性输入。在不了解超极化和分流对抑制发射速率调制的相对贡献的情况下,很难预测由于阴离子的还原会产生多少净去抑制作用。因此,我们使用了生物物理上精确的椎板I神经元模型来定量研究Eanion的变化如何影响发射速率调节。结果模拟结果表明,即使Eanion的少量降低也会降低对发射速率的抑制性控制,因为Eanion的降低不仅会降低甘氨酸/ GABAA受体介导的超极化,而且还会间接损害分流的能力以减少峰值。之所以会出现后一种效果,是因为分流介导的发射速率调节取决于两种生物物理现象之间的竞争:分流减少了去极化,从而减少了尖峰,但是分流也缩短了膜的时间常数,从而加快了膜的充电速度并增加了尖峰。当平均去极化高于阈值时,后一种效应占主导。因此,抑制作用的发生是因为超极化和分流介导的发射速率调节均被Eanion的还原所破坏。少量的减少可以通过增加的甘氨酸/ GABAA受体介导的输入来补偿,但是当Eanion的减少超过临界值时,系统补偿不足(即补偿失败)。一旦解除抑制变得不可补偿,就必然会出现过度兴奋。此外,通过增加甘氨酸/ GABAA受体介导的输入进行的补偿将不稳定引入系统中,从而使其越来越倾向于突然失代偿甚至是自相矛盾的激发。结论减少Eanion会极大地削弱对射速的抑制性控制,如果补偿失败,可能会导致与神经性疼痛相关的异常性疼痛和痛觉过敏。这些数据有助于解释神经性疼痛的相对难治性,并说明不仅基于疾病机制,而且基于对该机制的定量理解选择治疗方法是多么重要。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号