首页> 外文期刊>Minerals >Trace Metal Distribution in Sulfide Minerals from Ultramafic-Hosted Hydrothermal Systems: Examples from the Kairei Vent Field, Central Indian Ridge
【24h】

Trace Metal Distribution in Sulfide Minerals from Ultramafic-Hosted Hydrothermal Systems: Examples from the Kairei Vent Field, Central Indian Ridge

机译:超镁铁质水热系统中硫化物矿物中的痕量金属分布:以中印度洋脊Kairei通风田为例

获取原文
       

摘要

The ultramafic-hosted Kairei vent field is located at 25°19′ S, 70°02′ E, towards the Northern end of segment 1 of the Central Indian Ridge (CIR-S1) at a water depth of ~2450 m. This study aims to investigate the distribution of trace elements among sulfide minerals of differing textures and to examine the possible factors controlling the trace element distribution in those minerals using LA-ICP-MS spot and line scan analyses. Our results show that there are distinct systematic differences in trace element distributions throughout the different minerals, as follows: (1) pyrite is divided into three types at Kairei, including early-stage euhedral pyrite (py-I), sub-euhedral pyrite (py-II), and colloform pyrite (py-III). Pyrite is generally enriched with Mo, Au, As, Tl, Mn, and U. Pyrite-I has high contents of Se, Te, Bi, and Ni when compared to the other types; py-II is enriched in Au relative to py-I and py-III, but poor in Ni; py-III is enriched in Mo, Pb, and U but is poor in Se, Te, Bi, and Au relative to py-I and py-II. Variations in the concentrations of Se, Te, and Bi in pyrite are most likely governed by the strong temperature gradient. There is generally a lower concentration of nickel than Co in pyrite, indicating that our samples precipitated at high temperatures, whereas the extreme Co enrichment is likely from a magmatic heat source combined with an influence of serpentinization reactions. (2) Chalcopyrite is characterized by high concentrations of Co, Se, and Te. The abundance of Se and Te in chalcopyrite over the other minerals is interpreted to have been caused by the high solubilities of Se and Te in the chalcopyrite lattice at high temperatures. The concentrations of Sb, As, and Au are relatively low in chalcopyrite from the Kairei vent field. (3) Sphalerite from Zn-rich chimneys is characterized by high concentrations of Sn, Co, Ga, Ge, Ag, Pb, Sb, As, and Cd, but is depleted in Se, Te, Bi, Mo, Au, Ni, Tl, Mn, Ba, V, and U in comparison with the other minerals. The high concentrations of Cd and Co are likely caused by the substitution of Cd 2+ and Co 2+ for Zn 2+ in sphalerite. A high concentration of Pb accompanied by a high Ag concentration in sphalerite indicates that Ag occurs as Pb–Ag sulfosalts. Gold is generally low in sphalerite and strongly correlates with Pb, suggesting its presence in microinclusions of galena. The strong correlation of As with Ge in sphalerite from Kairei suggests that they might precipitate at medium temperatures and under moderately reduced conditions. (4) Bornite–digenite has very low concentrations of most trace elements, except for Co, Se, and Bi. Serpentinization in ultramafic-hosted hydrothermal systems might play an important role in Au enrichment in pyrite with low As contents. Compared to felsic-hosted seafloor massive sulfide deposits, sulfide minerals from ultramafic-hosted deposits show higher concentrations of Se and Te, but lower As, Sb, and Au concentrations, the latter often attributed to the contribution of magmatic volatiles. As with typical ultramafic-hosted seafloor massive sulfide deposits, Se enrichment in chalcopyrite from Kairei indicates that the primary factor that controls the Se enrichment is temperature-controlled mobility in vent fluids.
机译:由超镁铁质气藏的Kairei喷口场位于中印度洋脊(CIR-S1)1段北端,水深约2450 m,位于南纬25°19′,东经70°02′。这项研究旨在调查不同质地的硫化物矿物中微量元素的分布,并使用LA-ICP-MS点和线扫描分析法研究控制这些矿物中微量元素分布的可能因素。我们的结果表明,在不同矿物中微量元素分布存在明显的系统差异,如下所示:(1)黄铁矿在Kairei分为三种类型,包括早期的全金属黄铁矿(py-I),半全金属黄铁矿( py-II)和大黄铁矿(py-III)。硫铁矿通常富含Mo,Au,As,Tl,Mn和U。与其他类型的硫铁矿相比,硫铁矿I的Se,Te,Bi和Ni含量高。相对于py-I和py-III,py-II的Au含量较高,但Ni的含量较低。相对于py-I和py-II,py-III的Mo,Pb和U含量较高,而Se,Te,Bi和Au的含量较低。黄铁矿中Se,Te和Bi浓度的变化很可能由强温度梯度决定。通常,黄铁矿中的镍浓度比钴低,这表明我们的样品在高温下析出,而岩浆热源结合蛇纹石化反应的影响则可能会使钴大量富集。 (2)黄铜矿的特点是高浓度的Co,Se和Te。黄铜矿中硒和碲的丰度高于其他矿物,这被解释为是由于高温下黄铜矿中硒和碲的高溶解度引起的。来自Kairei喷口场的黄铜矿中的Sb,As和Au的浓度相对较低。 (3)富锌烟囱中闪锌矿的特征是高浓度的Sn,Co,Ga,Ge,Ag,Pb,Sb,As和Cd,但富含Se,Te,Bi,Mo,Au,Ni, Tl,Mn,Ba,V和U与其他矿物相比。 Cd和Co的高浓度可能是由Cd 2+和Co 2+代替了闪锌矿中的Zn 2+引起的。闪锌矿中高浓度的Pb伴随着高的Ag浓度表明,Ag以Pb-Ag硫盐形式存在。闪锌矿中的金含量通常较低,并且与Pb密切相关,表明其存在于方铅矿的微包裹体中。 Kairei闪锌矿中As与Ge的强相关性表明它们可能在中等温度和中等还原条件下沉淀。 (4)硼铁矿-褐铁矿除Co,Se和Bi以外的大多数痕量元素的浓度非常低。超镁铁质水热系统中的蛇纹石化可能在低砷含量的黄铁矿中金富集中发挥重要作用。与长石质海底块状硫化物矿床相比,超镁铁质矿床中的硫化物矿物显示出较高的硒和碲浓度,但较低的砷,锑和金含量,后者通常归因于岩浆挥发物的贡献。与典型的超镁铁质海底块状硫化物矿床一样,来自Kairei的黄铜矿中Se的富集表明,控制Se富集的主要因素是排出流体中的温度控制迁移率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号