首页> 外文期刊>Micromachines >Dislocation Dynamics-Based Modeling and Simulations of Subsurface Damages Microstructure of Orthogonal Cutting of Titanium Alloy
【24h】

Dislocation Dynamics-Based Modeling and Simulations of Subsurface Damages Microstructure of Orthogonal Cutting of Titanium Alloy

机译:基于位错动力学的钛合金正交切削亚表面损伤微观组织建模与仿真

获取原文
获取外文期刊封面目录资料

摘要

In this work, a novel method is put forward to quantitatively simulate the subsurface damages microstructural alteration of titanium alloy components subjected to microscale cutting. A trans-scale numerical framework is conducted with the purpose of revealing the underlying influence mechanism of tool structure parameters on subsurface dislocation configurations using a dislocation dynamics-based model, which considers both dislocation structural transformation and grain refining. Results showed that the developed framework not only captured the essential features of workpiece microstructure, but also predicted the subsurface damages layer states and their modifications. A series of defects were found in the material subsurface during the orthogonal cutting of titanium alloy, such as edge and screw dislocations, junctions, parallel slip lines, intersection dislocation bands, vacancy defects, and refinement grains. Particularly, in the process of micro-cutting, the depth of subsurface damages layer increased significantly with cutting length at the beginning, and then remained unchanged in the stable removal phase. Moreover, smaller edge radius and larger rake angle can greatly weaken the squeezing action and heat diffusion effect between the tool tip and workpiece, which further prevents the formation of subsurface defects and enhances finished surface quality. In addition, although increasing tool clearance angle could drastically lighten the thickness of subsurface damages layer, it is noteworthy that its performance would be decreased significantly when the clearance angle was greater than or equal to 5???°. The micro-end-milling experiment was performed to validate the existing simulation results, and the results show very good agreement.
机译:在这项工作中,提出了一种新的方法来定量模拟钛合金零件进行微观切割后的亚表面损伤的微观组织变化。进行了跨尺度数值框架,目的是使用基于位错动力学的模型来揭示工具结构参数对地下位错构型的潜在影响机制,该模型同时考虑了位错结构的转变和晶粒的细化。结果表明,所开发的框架不仅捕捉了工件微观结构的本质特征,而且还预测了亚表面损伤层的状态及其变化。在钛合金的正交切削过程中,发现材料表面存在一系列缺陷,例如边缘和螺钉位错,接合处,平行滑移线,相交位错带,空位缺陷和细化晶粒。特别地,在微切割过程中,地下损伤层的深度在开始时随切割长度的增加而显着增加,然后在稳定的去除阶段保持不变。而且,较小的刃口半径和较大的前角可极大地削弱刀尖与工件之间的挤压作用和热扩散效果,从而进一步防止了表面缺陷的形成并提高了最终的表面质量。另外,尽管增加工具间隙角可以大大减轻地下损伤层的厚度,但是值得注意的是,当间隙角大于或等于5°时,其性能将大大降低。进行了微细铣削实验,以验证现有的仿真结果,结果显示出很好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号