首页> 外文期刊>Metabolic Engineering Communications >Bacterial bifunctional chorismate mutase-prephenate dehydratase PheA increases flux into the yeast phenylalanine pathway and improves mandelic acid production
【24h】

Bacterial bifunctional chorismate mutase-prephenate dehydratase PheA increases flux into the yeast phenylalanine pathway and improves mandelic acid production

机译:细菌双功能分支酸突变酶-苯甲酸酯脱水酶PheA增加进入酵母苯丙氨酸途径的通量并改善扁桃酸的产生

获取原文
       

摘要

Mandelic acid is an important aromatic fine chemical and is currently mainly produced via chemical synthesis. Recently, mandelic acid production was achieved by microbial fermentations using engineered Escherichia coli and Saccharomyces cerevisiae expressing heterologous hydroxymandelate synthases ( hmaS ). The best-performing strains carried a deletion of the gene encoding the first enzyme of the tyrosine biosynthetic pathway and therefore were auxotrophic for tyrosine. This was necessary to avoid formation of the competing intermediate hydroxyphenylpyruvate, the preferred substrate for HmaS, which would have resulted in the predominant production of hydroxymandelic acid. However, feeding tyrosine to the medium would increase fermentation costs. In order to engineer a tyrosine prototrophic mandelic acid-producing S. cerevisiae strain, we tested three strategies: (1) rational engineering of the HmaS active site for reduced binding of hydroxyphenylpyruvate, (2) compartmentalization of the mandelic acid biosynthesis pathway by relocating HmaS together with the two upstream enzymes chorismate mutase Aro7 and prephenate dehydratase Pha2 into mitochondria or peroxisomes, and (3) utilizing a feedback-resistant version of the bifunctional E. coli enzyme PheA (PheAfbr) in an aro7 deletion strain. PheA has both chorismate mutase and prephenate dehydratase activity. Whereas the enzyme engineering approaches were only successful in respect to reducing the preference of HmaS for hydroxyphenylpyruvate but not in increasing mandelic acid titers, we could show that strategies (2) and (3) significantly reduced hydroxymandelic acid production in favor of increased mandelic acid production, without causing tyrosine auxotrophy. Using the bifunctional enzyme PheAfbr turned out to be the most promising strategy, and mandelic acid production could be increased 12-fold, yielding titers up to 120?mg/L. Moreover, our results indicate that utilizing PheAfbr also shows promise for other industrial applications with S. cerevisiae that depend on a strong flux into the phenylalanine biosynthetic pathway.
机译:扁桃酸是重要的芳香族精细化学品,目前主要通过化学合成生产。最近,通过使用表达异源羟基扁桃酸合酶(hmaS)的工程化大肠杆菌和酿酒酵母通过微生物发酵实现了扁桃酸的生产。表现最佳的菌株携带了编码酪氨酸生物合成途径第一个酶的基因的缺失,因此酪氨酸营养缺陷。为避免形成竞争性中间体羟基苯基丙酮酸(HmaS的首选底物),这是必须的,这将导致羟基扁桃酸的大量生产。但是,向培养基中加入酪氨酸会增加发酵成本。为了工程化生产酪氨酸原养型扁桃酸的酿酒酵母菌株,我们测试了三种策略:(1)合理设计HmaS活性位点,以减少对羟基苯丙酮酸的结合;(2)通过重新定位HmaS来分隔扁桃酸生物合成途径与两个上游酶分支氨酸突变酶Aro7和苯甲酸酯脱水酶Pha2一起进入线粒体或过氧化物酶体,以及(3)在aro7中利用双功能大肠杆菌PheA(PheA fbr )的抗反馈型缺失株。 PheA具有分支酸突变酶和苯甲酸酯脱水酶活性。尽管酶工程方法仅在降低HmaS对羟基苯丙酮酸的偏爱方面取得了成功,但在增加扁桃酸滴度方面没有成功,但我们可以证明策略(2)和(3)显着降低了羟基扁桃酸的产生,而增加了扁桃酸的产生,而不会引起酪氨酸营养缺陷。事实证明,使用双功能酶PheA fbr 是最有前途的策略,扁桃酸的产量可以提高12倍,效价高达120?mg / L。此外,我们的结果表明,利用PheA fbr 还显示了酿酒酵母在其他工业应用中的前景,这些应用依赖于向苯丙氨酸生物合成途径的强通量。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号