...
首页> 外文期刊>Microbiology and Molecular Biology Reviews >Biological Nanomotors with a Revolution, Linear, or Rotation Motion Mechanism
【24h】

Biological Nanomotors with a Revolution, Linear, or Rotation Motion Mechanism

机译:具有旋转,线性或旋转运动机制的生物纳米电动机

获取原文
           

摘要

SUMMARY The ubiquitous biological nanomotors were classified into two categories in the past: linear and rotation motors. In 2013, a third type of biomotor, revolution without rotation (http://rnanano.osu.edu/movie.html), was discovered and found to be widespread among bacteria, eukaryotic viruses, and double-stranded DNA (dsDNA) bacteriophages. This review focuses on recent findings about various aspects of motors, including chirality, stoichiometry, channel size, entropy, conformational change, and energy usage rate, in a variety of well-studied motors, including FoF1 ATPase, helicases, viral dsDNA-packaging motors, bacterial chromosome translocases, myosin, kinesin, and dynein. In particular, dsDNA translocases are used to illustrate how these features relate to the motion mechanism and how nature elegantly evolved a revolution mechanism to avoid coiling and tangling during lengthy dsDNA genome transportation in cell division. Motor chirality and channel size are two factors that distinguish rotation motors from revolution motors. Rotation motors use right-handed channels to drive the right-handed dsDNA, similar to the way a nut drives the bolt with threads in same orientation; revolution motors use left-handed motor channels to revolve the right-handed dsDNA. Rotation motors use small channels (<2 nm in diameter) for the close contact of the channel wall with single-stranded DNA (ssDNA) or the 2-nm dsDNA bo revolution motors use larger channels (>3 nm) with room for the bolt to revolve. Binding and hydrolysis of ATP are linked to different conformational entropy changes in the motor that lead to altered affinity for the substrate and allow work to be done, for example, helicase unwinding of DNA or translocase directional movement of DNA.
机译:发明内容过去,普遍存在的生物纳米电动机被分为两类:线性电动机和旋转电动机。 2013年,发现了第三种类型的生物动力,即不旋转的旋转(http://rnanano.osu.edu/movie.html),并发现其广泛分布于细菌,真核病毒和双链DNA(dsDNA)噬菌体中。 。这篇综述着重研究了有关马达的各个方面的最新发现,包括手性,化学计量,通道大小,熵,构象变化和能量使用率,这些都是在经过充分研究的马达中进行的,包括FoF1 ATPase,解旋酶,病毒dsDNA包装马达,细菌染色体转位酶,肌球蛋白,驱动蛋白和动力蛋白。特别是,使用dsDNA转移酶来说明这些特征如何与运动机制相关,以及自然如何优雅地进化出一种旋转机制,以避免在细胞分裂过程中漫长的dsDNA基因组运输过程中出现卷曲和缠结。马达手性和通道尺寸是区分旋转马达和旋转马达的两个因素。旋转马达使用右旋通道来驱动右旋dsDNA,类似于螺母以相同方向驱动带有螺纹的螺栓的方式。旋转马达使用左手马达通道旋转右手dsDNA。旋转马达使用小的通道(直径小于2 nm)使通道壁与单链DNA(ssDNA)或2 nm dsDNA螺栓紧密接触。旋转马达使用较大的通道(> 3 nm),并留有螺栓旋转的空间。 ATP的结合和水解与电机中不同的构象熵变化相关,从而导致对底物的亲和力发生改变,并允许完成工作,例如解旋酶解链DNA或DNA的转位酶定向运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号