首页> 外文期刊>Medical science monitor : >Morphine synthesis in animals
【24h】

Morphine synthesis in animals

机译:动物中的吗啡合成

获取原文
获取外文期刊封面目录资料

摘要

In this month's issue of Medical Science Monitor, Kream and Stefano presentan empirical based model for morphine biosynthesis in animals. Briefly, [i]de novo[/i] biosynthesis of morphineboth in [i]Papaver somniferum[/i] and in complex animal systems proceeds via chemical modification of two moleculesof L-tyrosine (L-TYR) and ends with the stereoselective expression of biologically active (9R)-morphine.The early stages of morphine biosynthesis in plants and animals utilize the catechol derivatives of L-TYR,L-3,4-dihydroxyphenylalanine (L-DOPA) and dopamine (DA), to form benzylisoquinoline (BIQ) alkaloids thatsubsequently undergo sequential O- and N-methylation events, and an additional ring hydroxylation inthe plant pathway, leading to the formation of the essential chemical precursor (S)-reticuline. The importantobservation that both plant and animal systems also utilize the L-TYR-derived trace amine tyramine (TA)for cellular morphine production provides a unifying principle or platform by which to construct ourevidence-based model. TA has previously been established as a key player in the biosynthesis of the BIQalkaloids morphine, sanguinarine, and berberine, in [i]Papaver somniferum[/i]. The critical involvement of TAin both plant and animal biosynthetic pathways supports the existence of an active, tyrosine hydroxylase(TH)-independent, cellular pathway of DA expression that may have previously gone unnoticed in higheranimal systems. The essential role of TA as a [i]de novo[/i] precursor implicitly links present, historical,and extensive plant data that have established the critical importance of microsomal cytochrome P450(CYP) isoenzymes at early and late stages of morphine biosynthesis. CYP-mediated conversion of severalintermediate BIQ and morphinan precursors within the biosynthetic scheme also indicates that [i]de novo[/i] synthesis of morphine is by necessity segregated to enzyme complexes and precursor pools within definedcellular compartments, notably the endoplasmic reticulum (ER) that are independently regulated and distinctfrom those predominantly devoted to TH-dependent synthesis and maintenance of vesicular DA pools. Recentstudies have demonstrated that several key enzymes in the BIQ biosynthetic pathway in [i]Papaver somniferumare[/i] associated with the ER. As recently elucidated in plants, the enzyme (S)-norcoclaurine synthase stereoselectivelycatalyzes the condensation and rearrangement of DA and the TA metabolite 4-hydroxyphenylacetaldehydeto form (S)-norcoclaurine as the first committed step in the biosynthesis of BIQ alkaloids such as morphineand berberine. In the opium poppy, pyridoxal phosphate-dependent progenitor isoenzymes with dual L-TYR decarboxylase (TDC) and L-DOPA decarboxylase (DDC) activities generate the L-TYR-derived substrates requiredfor (S)-norcoclaurine formation. Formulation of a cogent model of regulated morphine expression in animalcells requires biochemical elucidation of a similar committed step involving enzyme-catalyzed condensationof DA with aldehyde or ketoacid metabolites of L-DOPA to form the BIQ intermediate precursor tetrahydropapaveroline(THP, also called norlaudanosoline). By analogy to the plant system, the well-established but often overlookedside reaction of mammalian DDC to produce 3, 4-dihydroxyphenylacetaldehyde via pyridoxal phosphate mediated catalysis lends strong support to its essential role as a regulatory enzyme involved in THP formationin vivo. A compelling model of [i]de novo[/i] morphine biosynthesis in animals must also include regulatorymechanisms responsible for the compartmentalization and mobilization of essential substrate pools ofL-TYR and L-TYR-derived molecules targeted for BIQ alkaloid production. Previous in vivo pharmacologicaldata indicate reversible transamination of racemic D- and L-DOPA via the alpha-keto acid intermediate3, 4-dihydroxyphenylpyruvate and demonstrate significant L-DOPA sparing effects of co-administered 3,4-dihydroxyphenylpyr
机译:在本月的《医学监测》中,Kream和Stefano提出了一种基于经验的动物吗啡生物合成模型。简而言之,在[i]罂粟[/ i]和复杂动物系统中[i] de novo [/ i]生物合成都是通过两个L-酪氨酸(L-TYR)分子的化学修饰而进行的,并以立体选择性表达结束(9R)-吗啡的生物活性。动植物中吗啡生物合成的早期阶段利用L-TYR,L-3,4-二羟基苯丙氨酸(L-DOPA)和多巴胺(DA)的邻苯二酚衍生物形成苄基异喹啉( BIQ)生物碱,这些生物碱随后经历顺序的O-和N-甲基化事件,并在植物途径中发生额外的环羟基化,从而导致形成必需的化学前体(S)-网状脯氨酸。植物和动物系统还利用L-TYR衍生的痕量胺酪胺(TA)进行细胞吗啡生产的重要观察结果为构建基于证据的模型提供了统一的原理或平台。在[i]罂粟[/ i]中,TA先前已被确定为BIQ生物碱吗啡,血红素和小ber碱生物合成的关键参与者。 TA在植物和动物生物合成途径中的关键参与支持了DA表达的活性酪氨酸羟化酶(TH)独立的细胞通路的存在,而该通路以前可能在高等动物系统中未被发现。 TA作为[i] novo [/ i]前体的重要作用隐式链接了当前,历史和广泛的植物数据,这些数据确定了吗啡生物合成早期和晚期的微粒体细胞色素P450(CYP)同工酶至关重要。 CYP介导的生物合成方案中几种中间BIQ和吗啡喃前体的转化还表明,[i]从头合成吗啡必须在限定的细胞区室(尤其是内质网(ER))中分离为酶复合物和前体库。它们被独立地调节并且不同于主要致力于TH依赖性的囊状DA池的合成和维持的那些。最近的研究表明[i]罂粟[/ i]中BIQ生物合成途径中的几种关键酶与ER有关。正如最近在植物中阐明的那样,作为BIQ生物碱如吗啡和小ber碱的生物合成的第一个重要步骤,酶(S)-降尿嘧啶合酶立体选择性催化DA和TA代谢物4-羟基苯基乙醛的缩合和重排,从而形成(S)-降尿嘧啶。在罂粟中,具有双重L-TYR脱羧酶(TDC)和L-DOPA脱羧酶(DDC)活性的吡pyr醛磷酸依赖性祖先同工酶可产生L-TYR衍生的底物,以形成(S)-降尿酸尿苷。建立动物细胞中可调节的吗啡表达的有力模型需要生物化学阐明类似的确定步骤,该步骤涉及酶催化DA与L-DOPA的醛或酮酸代谢物缩合以形成BIQ中间体前体四氢罂粟碱(THP,也称为正十二烷)。与植物系统类似,哺乳动物DDC通过磷酸吡ido醛介导的催化生成3,4-二羟基苯乙醛的成熟但经常被忽略的副反应为其作为体内参与THP形成的调节酶的基本作用提供了有力支持。动物体内从头合成吗啡的令人信服的模型还必须包括调节机制,该机制负责针对BIQ生物碱生产的L-TYR和L-TYR衍生的分子的基本底物库的区室化和动员。先前的体内药理学数据表明,外消旋的D-和L-DOPA通过α-酮酸中间体3,4-二羟基苯基丙酮酸可逆转氨,并证明了3,4-dihydroxyphenylpyr共同给药对L-DOPA有明显的保护作用

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号