首页> 外文期刊>Frontiers in Human Neuroscience >Commentary: Integrating electrodermal biofeedback into pharmacologic treatment of grand mal seizures
【24h】

Commentary: Integrating electrodermal biofeedback into pharmacologic treatment of grand mal seizures

机译:评论:将皮肤电生物反馈整合到癫痫大发作的药物治疗中

获取原文
           

摘要

Thirty percent of patients with epilepsy experience seizures despite optimal anticonvulsant drug treatment. Stress is frequently identified by patients with epilepsy as a precipitant of seizures (Spector et al., 2000 ; Ferlisi and Shorvon, 2014 ). Patients also often report using countermeasures to control the seizure onset. These are typically spontaneous and individualized such as increasing arousal by walking, breathing, standing, focusing attention, changing way of thinking, and more rarely inducing relaxation (Lee and No, 2005 ; Hether et al., 2013 ). In parallel, behavioral and psychological interventions, complementing conventional therapeutic methods for the management of epileptic seizures, have gained greater clinical attention over the past decade. Among these, Biofeedback (BFK) represents a noninvasive biobehavioral treatment that enables a patient to gain volitional control over a specific physiological process. BFK has already shown its value when applied to patients with epilepsy (Sterman and Friar, 1972 ; Rockstroh et al., 1993 ; Nagai et al., 2004a ; Nagai, 2011 ; Micoulaud-Franchi et al., 2014a , b ). Scrimali et al. ( 2015 ) have rightly pointed out the potential usefulness of electrodermal biofeedback in the management of refractory epilepsy. In a single case study, they report an effect of electrodermal activity (EDA) relaxation biofeedback in reducing seizures in a patient treated for 2 years. This case study supports the necessity to expand clinical armamentarium for treatment-resistant patients with few alternatives. However, in this commentary we would like to specify that contrary to what it is claimed by the authors, decreasing arousal, using relaxation biofeedback is not the method proposed by Nagai et al. ( 2004a ). On the contrary, these authors used a protocol based on increasing arousal. The EDA biofeedback treatment designed by Nagai et al. ( 2004a ) is aimed at increasing the tonic levels of peripheral sympathetic arousal rather than at decreasing EDA level. In addition, these authors (Scrimali et al., 2015 ) cite Nagai et al. ( 2004a ) when they claim that “Grand Mal” seizures are characterized by increased sympathetic arousal. However, there is no mention of such a relationship in the paper of Nagai et al. that rather highlights an inverse relationship between sympathetic arousal and an electroencephalographic index of cortical arousal that is linked with seizure activity. The motivation for believing that EDA relaxation biofeedback may be beneficial for patients with epilepsy comes is understandable given the relationship between stress and increased skin conductance level. It is known that stress and anxiety are commonly reported triggers of seizures (Fenwick, 1991 ; Antebi and Bird, 1993 ; Spector et al., 2001 ; Nakken et al., 2005 ; Petitmengin et al., 2006 ; Pinikahana and Dono, 2009 ). Thus, inducing relaxation in order to reduce the impact of stress has theoretical justification for patients with epileptic seizure triggered by stress. EDA reflects the action of sympathetic autonomic nerves on eccrine sweat glands and is a sensitive indicator of central (involuntary and voluntary induced) changes in arousal, associated with emotion, attention, and physical activity (Neumann and Blanton, 1970 ). In fact, EDA can be increased not only by stress, but also by preparation of and engagement with intellectual activity, during emotion regulation or even when experiencing happiness (Gross and Levenson, 1993 ; Reynaud et al., 2012 ). Moreover, regarding the relationship between autonomic physiology and seizures in epilepsy, a state of enhanced relaxation/low arousal can potentially worsen seizures through lowering the seizure threshold (Nagai et al., 2004b ). The theoretical rational behind the development of EDA biofeedback originated with a neurofeedback protocol focusing on Slow Cortical Potentials (SCP), an index of thalamocortical excitability. In SCP neurofeedback, patients are trained to reduce and reverse the negative amplitude of SCPs (Kotchoubey et al., 2001 ). This neurofeedback method has been shown to elicit a significant decrease in seizure frequency (Rockstroh et al., 1993 ) and can produce a sustained benefit that is apparent ten years after the end of treatment (Strehl et al., 2014 ). The amplitude of the Contingent Negative Variation (CNV) (a task-evoked event-related potential considered as a SCP and hence an index of cortical excitation) is greater during states of reduced autonomic arousal (Nagai et al., 2004b , 2009 ). Peripheral sympathetic activity (autonomic arousal), measured using EDA, can be increased either involuntarily by aversive auditory stimulation, or voluntarily by using biofeedback arousal. In both cases, the increase is associated with a reduction in the amplitude of the CNV. This observation indicated that the measures of peripheral sympathetic activity and thalamocortical excitation (as measured by the CNV) are inversely related (Nagai
机译:尽管进行了最佳的抗惊厥药物治疗,仍有30%的癫痫患者出现癫痫发作。癫痫患者经常发现应激是癫痫发作的诱因(Spector等,2000; Ferlisi和Shorvon,2014)。患者还经常报告使用对策来控制癫痫发作。这些通常是自发的和个性化的,例如通过步行,呼吸,站立,集中注意力,改变思维方式来增加唤醒,并且很少引起放松(Lee和No,2005; Hether等,2013)。同时,在过去的十年中,行为和心理干预与常规治疗癫痫发作的治疗方法相辅相成,在临床上得到了更大的关注。其中,生物反馈(BFK)代表一种非侵入性的生物行为疗法,可使患者获得对特定生理过程的自愿控制。当应用于癫痫患者时,BFK已经显示出其价值(Sterman和Friar,1972; Rockstroh等人,1993; Nagai等人,2004a; Nagai,2011; Micoulaud-Franchi等人,2014a,b)。 Scrimali等。 (2015)正确地指出了电皮生物反馈在难治性癫痫治疗中的潜在作用。在一个个案研究中,他们报告了皮肤电活动(EDA)松弛生物反馈在减少2年治疗患者的癫痫发作中的作用。该案例研究表明,只有很少的选择,才能扩大对治疗耐药患者的临床武器库。但是,在这篇评论中,我们想指出的是,与作者所声称的相反,使用放松生物反馈降低唤醒感不是Nagai等人提出的方法。 (2004a)。相反,这些作者使用了基于增加唤醒的协议。 Nagai等人设计的EDA生物反馈处理。 (2004a)的目的是提高周围交感觉的紧张水平,而不是降低EDA水平。另外,这些作者(Scrimali等,2015)引用了Nagai等。 (2004a),当他们声称“ Grand Mal”癫痫发作的特征是交感神经增强。然而,在Nagai等人的论文中没有提及这种关系。而是强调了交感唤醒与皮层唤醒的脑电图指数之间的反比关系,这与癫痫发作活动有关。考虑到压力与皮肤电导水平升高之间的关系,相信EDA放松生物反馈可能对癫痫患者有益的动机是可以理解的。众所周知,压力和焦虑是癫痫发作的常见诱因(Fenwick,1991; Antebi and Bird,1993; Spector等,2001; Nakken等,2005; Petitmengin等,2006; Pinikahana和Dono,2009 )。因此,诱导放松以减少压力的影响对于由压力触发的癫痫发作的患者具有理论上的依据。 EDA反映了交感自主神经对内分泌汗腺的作用,是中枢(非自愿和自愿诱发)觉醒变化的敏感指标,与情感,注意力和身体活动有关(Neumann和Blanton,1970)。实际上,EDA不仅可以通过压力来提高,而且可以通过在情绪调节期间甚至在经历幸福时通过准备和参与智力活动来增加(Gross和Levenson,1993; Reynaud等,2012)。此外,关于自主神经生理学与癫痫发作之间的关系,放松/低唤醒状态增强可能会通过降低癫痫发作阈值来加剧癫痫发作(Nagai等,2004b)。 EDA生物反馈发展背后的理论原理源自于神经反馈协议,该协议侧重于大脑皮层兴奋性指标慢皮质电位(SCP)。在SCP神经反馈中,训练患者减少和逆转SCP的负振幅(Kotchoubey等,2001)。这种神经反馈方法已被证明可引起癫痫发作频率的显着降低(Rockstroh等,1993),并可以产生持续的益处,这种益处在治疗结束后十年内可见(Strehl等,2014)。在自主觉醒减少的状态下,或有负变化(CNV)(与任务相关的事件相关电位被认为是SCP,因此被认为是皮质兴奋指数)的幅度更大(Nagai等人,2004b,2009)。使用EDA测量的周围交感活动(自主唤醒)可以通过厌恶性听觉刺激非自愿地增加,或者通过生物反馈唤醒自动地增加。在这两种情况下,增加都与CNV幅度的减小有关。该观察结果表明,外周交感神经活动和丘脑皮质兴奋的测量值(由CNV测量)呈负相关(Nagai

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号