...
首页> 外文期刊>Frontiers in Genetics >Normal vs. Malignant hematopoiesis: the complexity of acute leukemia through systems biology
【24h】

Normal vs. Malignant hematopoiesis: the complexity of acute leukemia through systems biology

机译:正常与恶性造血:通过系统生物学分析急性白血病的复杂性

获取原文

摘要

The early stages of malignant hematopoiesis: A multi-cellular, multi-compartment and multi-factorial challenging study model Development of normal hematopoietic cells is an ordered multi-step process, tightly regulated by a complex network of intrinsic factors and microenvironmental cues that control cell fate decisions within the bone marrow (BM) (Pelayo et al., 2012 ; Purizaca et al., 2012 ; Boulais and Frenette, 2015 ). During malignant hematological disorders, including acute leukemias (AL), the uncontrolled differentiation of precursors of the lymphoid or myeloid series sustains tumor growth at the expense of normal blood cell production. Moreover, selection and dominance among leukemic clones occur while competing for niche resources and creating abnormal BM microenvironments that co-participate in the pathobiology of the disease (Colmone et al., 2008 ; Ayala et al., 2009 ; Purizaca et al., 2012 ; Kim et al., 2015 ; Vilchis-Ordo?ez et al., 2015 ). Thus, due to the complexity and health impact of AL (Gupta et al., 2014 ), new strategies to better predict cell population dynamics according to genetics, microenvironmental and clinical heterogeneous contexts may contribute to understand its pathobiology and to guide strategies for decreasing overall mortality. Mathematical modeling has emerged as a powerful tool in biomedical and health research because it enables the simulation of complex biological systems and the efficient generation of testable hypotheses. In recent years, leukemic cell dynamics has been addressed from the novel view of systems biology, resulting in helpful stochastic and deterministic models and providing clearer understanding of the disease by simplification of malignant clonal evolution processes (Vesely et al., 2011 ; Amir et al., 2013 ; Paguirigan et al., 2015 ). However, models fitted to experimental data must strike a balance between simplicity and reality, so that they can bring insights into clinical scenarios. Here we discuss the importance and challenges of incorporating the BM microenvironment into AL modeling, as a key element that will control the interplay between cell populations and the selective pressure leading to leukemic or normal hematopoiesis progression. By developing integrative tools that better mimic and predict the behavior of heterogeneous and polyclonal cells in the context of abnormal microenvironments within leukemic bone marrow, we may learn about crucial mechanisms co-participating in the etiology and progression of the disease. Normal vs. leukemic clones: Systems biology in the study of acute leukemia complexity Continuous dynamic modeling with differential equations (DEs) has been the most popular systems biology tool for the study of normal and leukemic hematopoiesis. This type of modeling is useful for the time evolving non-linear competition between normal and leukemic cell populations, considering multiple compartments to simulate different maturation stages or multiclonal behavior (Catlin et al., 2005 ; Stiehl and Marciniak-Czochra, 2012 ; MacLean et al., 2013 ; Stiehl et al., 2014 ). Of special interest, theoretical data suggests the existence of an initial “steady state” before the disease development, when co-existence of normal hematopoiesis with a limited number of pre-leukemic cells controls leukemia installation (Rubinow and Lebowitz, 1976 ; Stiehl and Marciniak-Czochra, 2012 ; Swaminathan et al., 2015 ). A sudden change in the homeostatic parameters may induce leukemic cell expansion leading to a progressive decrease of normal hematopoiesis, while perturbation of initial homeostatic state endows malignant cells with self-renewal and proliferation. Accordingly, the model by Rubinow and Lebowitz's on competition advantage of leukemia cells proposed a higher value of their equilibrium number that refers to the maximum population size that can be supported within the niche. If the stop-expansion signal for malignant progenitors is not delivered before the equilibrium number is reached, a signal activating the slow-down of normal cells promotes the expansion of the leukemic population. High equilibrium numbers in leukemic compartments could be biologically interpreted as independence from the microenvironment, unbalanced proliferation/apoptosis rates, and further accumulation of blasts. Using a stochastic model to simulate stem cell decisions, Abkowitz and colleagues have analyzed the behavior of individual components (HSC) acting collectively within a dynamical complex context (clonal diversity plus heterogeneous surrounding microenvironment). By tracking HSC replication, the expansion of the hematopoietic system was apparent from birth to adolescence, when steady-state levels are reached. Stochastic modeling of replication kinetics has shown to be useful to predict cell rebounding upon hematopoietic transplantation or under emerging conditions (Catlin et al., 2005 , 2011 ). In contrast, agent-based deterministic modeling of HSC organizati
机译:恶性造血的早期阶段:多细胞,多室,多因素的挑战性研究模型正常造血细胞的发育是一个有序的多步过程,受到内在因素和控制细胞的微环境线索的复杂网络的严格控制骨髓(BM)中的命运决定(Pelayo等人,2012; Purizaca等人,2012; Boulais和Frenette,2015)。在包括急性白血病(AL)在内的恶性血液系统疾病中,淋巴或髓样系列前体的不受控制的分化会维持肿瘤的生长,但会损害正常的血细胞生成。此外,在争夺利基资源并创造异常参与疾病病理生物学的异常BM微环境的同时,白血病克隆中的选择和优势发生了(Colmone等,2008; Ayala等,2009; Purizaca等,2012)。 ; Kim等人,2015; Vilchis-Ordo?ez等人,2015)。因此,由于AL的复杂性和对健康的影响(Gupta等,2014),根据遗传学,微环境和临床异质性背景更好地预测细胞群体动态的新策略可能有助于理解其病理生物学并指导降低总体病情的策略。死亡。数学建模已成为生物医学和健康研究中的强大工具,因为它可以模拟复杂的生物系统并有效生成可检验的假设。近年来,已经从系统生物学的新观点解决了白血病细胞动力学问题,从而建立了有用的随机和确定性模型,并通过简化恶性克隆进化过程提供了对疾病的更清晰了解(Vesely等人,2011; Amir等人(2013年; Paguirigan等人,2015年)。但是,适合实验数据的模型必须在简单性和现实性之间取得平衡,以便将见解带入临床场景。在这里,我们讨论将BM微环境纳入AL模型的重要性和挑战,因为它将作为控制细胞群体之间相互作用和导致白血病或正常造血进程的选择性压力的关键因素。通过开发可以更好地模拟和预测白血病骨髓内微环境异常的情况下异质和多克隆细胞行为的整合工具,我们可以了解共同参与疾病病因和进展的关键机制。正常与白血病克隆:急性白血病复杂性研究中的系统生物学用微分方程(DEs)进行连续动态建模一直是研究正常和白血病造血的最流行的系统生物学工具。考虑到多个隔室模拟不同的成熟阶段或多克隆行为,这种类型的建模对于正常细胞和白血病细胞群体之间的时间非线性竞争很有用(Catlin等人,2005; Stiehl和Marciniak-Czochra,2012; MacLean等人等人,2013; Stiehl等人,2014)。特别令人感兴趣的是,理论数据表明,在疾病发展之前,正常的造血功能与有限的白血病细胞数量共存可以控制白血病的发生(Rubinow and Lebowitz,1976; Stiehl and Marciniak) -Czochra,2012; Swaminathan等,2015)。稳态参数的突然变化可能会诱导白血病细胞扩增,导致正常造血功能逐渐下降,而初始稳态状态的扰动会赋予恶性细胞自我更新和增殖能力。因此,Rubinow和Lebowitz的关于白血病细胞竞争优势的模型提出了更高的平衡数值,即平衡位内可以支持的最大种群数量。如果在达到平衡数之前未传递恶性祖细胞的终止扩增信号,则激活正常细胞减速的信号会促进白血病细胞的扩增。从生物学上讲,白血病区室中的高平衡数可以解释为与微环境的独立性,不平衡的增殖/凋亡率以及胚细胞的进一步积累。通过使用随机模型来模拟干细胞决策,Abkowitz及其同事分析了在动态复杂环境(克隆多样性加上异质周围微环境)中共同起作用的单个组件(HSC)的行为。通过追踪HSC复制,当达到稳态水平时,从出生到青春期,造血系统的扩展是明显的。复制动力学的随机建模已显示可用于预测造血移植后或新兴条件下的细胞反弹(Catlin等,2005,2011)。相反,HSC组织的基于代理的确定性建模

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号