...
首页> 外文期刊>MBio >Engineering Nitrogen Fixation Activity in an Oxygenic Phototroph
【24h】

Engineering Nitrogen Fixation Activity in an Oxygenic Phototroph

机译:有氧光养植物中的工程固氮活性

获取原文
   

获取外文期刊封面封底 >>

       

摘要

ABSTRACT Biological nitrogen fixation is catalyzed by nitrogenase, a complex metalloenzyme found only in prokaryotes. N_(2)fixation is energetically highly expensive, and an energy-generating process such as photosynthesis can meet the energy demand of N_(2)fixation. However, synthesis and expression of nitrogenase are exquisitely sensitive to the presence of oxygen. Thus, engineering nitrogen fixation activity in photosynthetic organisms that produce oxygen is challenging. Cyanobacteria are oxygenic photosynthetic prokaryotes, and some of them also fix N_(2). Here, we demonstrate a feasible way to engineer nitrogenase activity in the nondiazotrophic cyanobacterium Synechocystis sp. PCC 6803 through the transfer of 35 nitrogen fixation ( nif ) genes from the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142. In addition, we have identified the minimal nif cluster required for such activity in Synechocystis 6803. Moreover, nitrogenase activity was significantly improved by increasing the expression levels of nif genes. Importantly, the O_(2)tolerance of nitrogenase was enhanced by introduction of uptake hydrogenase genes, showing this to be a functional way to improve nitrogenase enzyme activity under micro-oxic conditions. To date, our efforts have resulted in engineered Synechocystis 6803 strains that, remarkably, have more than 30% of the N_(2)fixation activity of Cyanothece 51142, the highest such activity established in any nondiazotrophic oxygenic photosynthetic organism. This report establishes a baseline for the ultimate goal of engineering nitrogen fixation ability in crop plants. IMPORTANCE Application of chemically synthesized nitrogen fertilizers has revolutionized agriculture. However, the energetic costs of such production processes and the widespread application of fertilizers have raised serious environmental issues. A sustainable alternative is to endow to crop plants the ability to fix atmospheric N_(2) in situ . One long-term approach is to transfer all nif genes from a prokaryote to plant cells and to express nitrogenase in an energy-producing organelle, chloroplast, or mitochondrion. In this context, Synechocystis 6803, the nondiazotrophic cyanobacterium utilized in this study, provides a model chassis for rapid investigation of the necessary requirements to establish diazotrophy in an oxygenic phototroph.
机译:摘要生物固氮是由固氮体(一种仅在原核生物中发现的复杂金属酶)催化的。 N_(2)固定在能量上非常昂贵,并且诸如光合作用的产生能量的过程可以满足N_(2)固定的能量需求。然而,固氮酶的合成和表达对氧的存在非常敏感。因此,在产生氧气的光合生物中工程固氮活性具有挑战性。蓝细菌是含氧的光合作用的原核生物,其中一些还固定N_(2)。在这里,我们展示了一种工程方法,可以工程化非重营养性蓝藻集胞藻属中的固氮酶活性。 PCC 6803通过从重氮营养性蓝藻蓝藻属物种中转移35个固氮(nif)基因来进行转移。 ATCC51142。此外,我们已经确定了Synechocystis 6803中这种活性所需的最小nif簇。此外,通过增加nif基因的表达水平,明显提高了固氮酶的活性。重要的是,通过引入摄取的氢化酶基因增强了固氮酶的O_(2)耐受性,表明这是在微氧条件下提高固氮酶活性的功能方法。迄今为止,我们的努力已经产生了工程化的集胞藻6803菌株,该菌株显着地具有Cyanothece 51142的N_(2)固定活性,这是在任何非营养型氧合光合生物中确立的最高活性。该报告为作物中工程固氮能力的最终目标建立了基线。重要信息化学合成氮肥的应用彻底改变了农业。然而,这种生产过程的高昂成本和肥料的广泛应用引起了严重的环境问题。一种可持续的替代方法是赋予作物植物原位固定大气N_(2)的能力。一种长期方法是将所有nif基因从原核生物转移至植物细胞,并在产生能量的细胞器,叶绿体或线粒体中表达固氮酶。在这种情况下,本研究中使用的非重营养蓝藻细菌集胞藻6803为快速研究在氧气光养菌中建立重氮营养的必要需求提供了一个模型框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号