...
首页> 外文期刊>MBio >A Xenobiotic Detoxification Pathway through Transcriptional Regulation in Filamentous Fungi
【24h】

A Xenobiotic Detoxification Pathway through Transcriptional Regulation in Filamentous Fungi

机译:通过丝状真菌转录调控的异种排毒途径。

获取原文
   

获取外文期刊封面封底 >>

       

摘要

ABSTRACT Fungi are known to utilize transcriptional regulation of genes that encode efflux transporters to detoxify xenobiotics; however, to date it is unknown how fungi transcriptionally regulate and coordinate different phases of detoxification system (phase I, modification; phase II, conjugation; and phase III, secretion). Here we present evidence of an evolutionary convergence between the fungal and mammalian lineages, whereby xenobiotic detoxification genes (phase I coding for cytochrome P450 monooxygenases [CYP450s] and phase III coding for ATP-binding cassette [ABC] efflux transporters) are transcriptionally regulated by structurally unrelated proteins. Following next-generation RNA sequencing (RNA-seq) analyses of a filamentous fungus, Sclerotinia homoeocarpa , the causal agent of dollar spot on turfgrasses, a multidrug resistant (MDR) field strain was found to overexpress phase I and III genes, coding for CYP450s and ABC transporters for xenobiotic detoxification. Furthermore, there was confirmation of a gain-of-function mutation of the fungus-specific transcription factor S.?homoeocarpa XDR1 (ShXDR1), which is responsible for constitutive and induced overexpression of the phase I and III genes, resulting in resistance to multiple classes of fungicidal chemicals. This fungal pathogen detoxifies xenobiotics through coordinated transcriptional control of CYP450s, biotransforming xenobiotics with different substrate specificities and ABC transporters, excreting a broad spectrum of xenobiotics or biotransformed metabolites. A Botrytis cinerea strain harboring the mutated ShXDR1 showed increased expression of phase I ( BcCYP65 ) and III ( BcatrD ) genes, resulting in resistance to fungicides. This indicates the regulatory system is conserved in filamentous fungi. This molecular genetic mechanism for xenobiotic detoxification in fungi holds potential for facilitating discovery of new antifungal drugs and further studies of convergent and divergent evolution of xenobiotic detoxification in eukaryote lineages. IMPORTANCE Emerging multidrug resistance (MDR) in pathogenic filamentous fungi is a significant threat to human health and agricultural production. Understanding mechanisms of MDR is essential to combating fungal pathogens; however, there is still limited information on MDR mechanisms conferred by xenobiotic detoxification. Here, we report for the first time that overexpression of phase I drug-metabolizing monooxygenases (cytochrome P450s) and phase III ATP-binding cassette efflux transporters is regulated by a gain-of-function mutation in the fungus-specific transcription factor in the MDR strains of the filamentous plant-pathogenic fungus Sclerotinia homoeocarpa . This study establishes a novel molecular mechanism of MDR through the xenobiotic detoxification pathway in filamentous fungi, which may facilitate the discovery of new antifungal drugs to control pathogenic fungi.
机译:众所周知,真菌利用编码外排转运蛋白的基因的转录调控来解毒异源生物。然而,迄今为止,尚不清楚真菌如何转录调节和协调排毒系统的不同阶段(I期,修饰; II期,结合; III期,分泌)。在这里,我们提供了真菌和哺乳动物谱系之间进化趋同的证据,由此异源生物解毒基因(编码细胞色素P450单加氧酶[CYP450s]的I期和编码ATP结合盒[ABC]外排转运蛋白的III期)在结构上受转录调控不相关的蛋白质。在对丝状真菌Scolerotinia homoeocarpa(草皮草上美元斑的病原体)进行下一代RNA测序(RNA-seq)分析后,发现一种耐多药(MDR)的田间菌株过表达I和III期基因,编码CYP450s和ABC转运蛋白用于异物排毒。此外,证实了真菌特异性转录因子S.homoeocarpa XDR1(ShXDR1)的功能获得突变,该突变导致I和III期基因的组成型和诱导过表达,从而导致对多种类杀真菌剂。这种真菌病原体通过对CYP450的协调转录控制,具有不同底物特异性的生物转化外源生物和ABC转运蛋白来解毒外源生物,从而排泄了广泛的外源生物或生物转化的代谢产物。携带突变的ShXDR1的灰葡萄孢菌株显示出I(BcCYP65)和III(BcatrD)相基因的表达增加,从而导致了对杀菌剂的抗性。这表明调节系统在丝状真菌中是保守的。真菌中异种毒素解毒的这种分子遗传机制具有促进发现新的抗真菌药以及进一步研究真核生物谱系中异种毒素解毒的趋同和发散的潜力。重要事项致病性丝状真菌中出现的多药耐药性(MDR)对人类健康和农业生产构成重大威胁。了解耐多药机制对于抵抗真菌病原体至关重要。然而,关于异种生物解毒所赋予的耐多药机制的信息仍然有限。在这里,我们首次报告I期药物代谢单加氧酶(细胞色素P450s)和III期ATP结合盒外排转运蛋白的过表达受MDR中真菌特异性转录因子功能获得性突变的调控。丝状植物致病真菌菌核盘菌菌株。本研究通过异源解毒途径在丝状真菌中建立了耐多药耐药的新分子机制,这可能有助于发现控制病原真菌的新型抗真菌药物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号