...
首页> 外文期刊>MBio >Cultivation of an Obligate Fe(II)-Oxidizing Lithoautotrophic Bacterium Using Electrodes
【24h】

Cultivation of an Obligate Fe(II)-Oxidizing Lithoautotrophic Bacterium Using Electrodes

机译:用电极培养专化的Fe(II)-氧化性自养细菌。

获取原文
           

摘要

Fe(II)-oxidizing aerobic bacteria are poorly understood, due in part to the difficulties involved in laboratory cultivation. Specific challenges include (i) providing a steady supply of electrons as Fe(II) while (ii) managing rapid formation of insoluble Fe(III) oxide precipitates and (iii) maintaining oxygen concentrations in the micromolar range to minimize abiotic Fe(II) oxidation. Electrochemical approaches offer an opportunity to study bacteria that require problematic electron donors or acceptors in their respiration. In the case of Fe(II)-oxidizing bacteria, if the electron transport machinery is able to oxidize metals at the outer cell surface, electrodes poised at potentials near those of natural substrates could serve as electron donors, eliminating concentration issues, side reactions, and mineral end products associated with metal oxidation. To test this hypothesis, the marine isolate Mariprofundus ferrooxydans PV-1, a neutrophilic obligate Fe(II)-oxidizing autotroph, was cultured using a poised electrode as the sole energy source. When cells grown in Fe(II)-containing medium were transferred into a three-electrode electrochemical cell, a cathodic (negative) current representing electron uptake by bacteria was detected, and it increased over a period of weeks. Cultures scraped from a portion of the electrode and transferred into sterile reactors consumed electrons at a similar rate. After three transfers in the absence of Fe(II), electrode-grown biofilms were studied to determine the relationship between donor redox potential and respiration rate. Electron microscopy revealed that under these conditions, M.?ferrooxydans PV-1 attaches to electrodes and does not produce characteristic iron oxide stalks but still appears to exhibit bifurcate cell division. >IMPORTANCE Electrochemical cultivation, supporting growth of bacteria with a constant supply of electron donors or acceptors,?is a promising tool for studying lithotrophic species in the laboratory. Major pitfalls present in standard cultivation methods used for metal-oxidizing microbes can be avoided by the use of an electrode as the sole electron donor. Electrochemical cultivation also offers a window into the poorly understood metabolism of microbes such as obligate Fe(II), Mn(II), or S0 oxidizers by replacing the electron source with the controlled surface of an electrode. The elucidation of redox-dependent behavior of these microbes could enhance industrial applications tuned to oxidation of specific metals, provide insight into how bacteria evolved to compete with oxygen for reactive metal species, and model geochemical impacts of their metabolism in the environment.
机译:Fe(II)氧化的好氧细菌了解很少,部分原因是实验室培养涉及的困难。具体挑战包括(i)提供稳定的电子形式的Fe(II),同时(ii)快速形成不溶性Fe(III)氧化物沉淀,以及(iii)将氧浓度保持在微摩尔范围内,以最大程度地减少非生物Fe(II)氧化。电化学方法为研究需要呼吸中有问​​题的电子供体或受体的细菌提供了机会。对于具有Fe(II)氧化作用的细菌,如果电子传输机制能够氧化细胞外表面的金属,则电位接近天然底物电位的电极可以用作电子给体,从而消除了浓度问题,副反应,以及与金属氧化有关的矿物最终产品。为了验证这一假设,使用平衡电极作为唯一能源培养了海洋分离株 Mariprofundus ferrooxydans PV-1,这是一种嗜中性专性的Fe(II)氧化自养生物。将在含Fe(II)的培养基中生长的细胞转移到三电极电化学电池中时,检测到代表细菌吸收电子的阴极(负)电流,并在数周内增加。从电极的一部分刮下并转移到无菌反应器中的培养物以相似的速率消耗电子。在不存在Fe(II)的情况下进行三次转移后,对电极生长的生物膜进行了研究,以确定供体氧化还原电势与呼吸速率之间的关系。电子显微镜显示,在这些条件下,亚铁氧甲烷 PV-1附着在电极上,不会产生特征性的氧化铁梗,但仍表现出分叉的细胞分裂。 >重要电化学培养通过不断提供电子供体或受体来支持细菌的生长,是在实验室研究岩石营养物种的一种有前途的工具。通过将电极用作唯一的电子供体,可以避免在用于金属氧化微生物的标准培养方法中存在的重大陷阱。通过用电极的受控表面代替电子源,电化学培养也为了解微生物的代谢提供了一个窗口,这些微生物例如专性的Fe(II),Mn(II)或S 0 氧化剂。阐明这些微生物的氧化还原依赖性行为可以增强针对特定金属氧化而定的工业应用,提供有关细菌如何与氧竞争以竞争活性金属种类的见解,并模拟其在环境中代谢的地球化学影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号