...
首页> 外文期刊>MBio >A Parasitic Arsenic Cycle That Shuttles Energy from Phytoplankton to Heterotrophic Bacterioplankton
【24h】

A Parasitic Arsenic Cycle That Shuttles Energy from Phytoplankton to Heterotrophic Bacterioplankton

机译:寄生砷循环将能量从浮游植物转移到异养细菌性浮游生物

获取原文
   

获取外文期刊封面封底 >>

       

摘要

In vast, warm regions of the oceans, phytoplankton face the problem of arsenic poisoning. Arsenate is toxic because it is chemically similar to phosphate, a scarce nutrient that phytoplankton cells need for growth. Many phytoplankton, including the commonest phytoplankton type in warm oceans, Prochlorococcus , detoxify arsenate by adding methyl groups. Here we show that the most abundant non-photosynthetic plankton in the oceans, SAR11 bacteria, remove the methyl groups, releasing poisonous forms of arsenic back into the water. We postulate that the methylation and demethylation of arsenic compounds creates a cycle in which the phytoplankton can never get ahead and must continually transfer energy to the SAR11 bacteria. We dub this a parasitic process and suggest that it might help explain why SAR11 bacteria are so successful, surpassing all other plankton in their numbers. Field experiments were done in the Sargasso Sea, a subtropical ocean gyre that is sometimes called an ocean desert because, throughout much of the year, there is not enough phosphorous in the water to support large blooms of phytoplankton. Ocean deserts are expanding as the oceans absorb heat and grow warmer. ABSTRACT In many regions of the world oceans, phytoplankton face the problem of discriminating between phosphate, an essential nutrient, and arsenate, a toxic analogue. Many phytoplankton, including the most abundant phytoplankton group known, Prochlorococcus , detoxify arsenate (AsV) by reduction to arsenite (AsIII), followed by methylation and excretion of the methylated arsenic products. We synthesized [ ~(14)C]dimethyl arsenate (DMA) and used it to show that cultured Pelagibacter strain HTCC7211 (SAR11) cells oxidize the methyl group carbons of DMA, producing ~(14)CO _(2) and ATP. We measured [ ~(14)C]DMA oxidation rates in the P-depleted surface waters of the Sargasso Sea, a subtropical ocean gyre. [ ~(14)C]DMA was oxidized to ~(14)CO _(2) by Sargasso Sea plankton communities at a rate that would cause turnover of the estimated DMA standing stock every 8.1?days. SAR11 strain HTCC7211, which was isolated from the Sargasso Sea, has a pair of arsenate resistance genes and was resistant to arsenate, showing no growth inhibition at As/P ratios of &65:1. Across the global oceans, there was a strong inverse relationship between the frequency of the arsenate reductase (LMWPc_ArsC) in Pelagibacter genomes and phosphate concentrations. We propose that the demethylation of methylated arsenic compounds by Pelagibacter and possibly other bacterioplankton, coupled with arsenate resistance, results in the transfer of energy from phytoplankton to bacteria. We dub this a parasitic cycle because the release of arsenate by Pelagibacter in principle creates a positive-feedback loop that forces phytoplankton to continually regenerate arsenate detoxification products, producing a flow of energy to P-limited ocean regions.
机译:在广阔,温暖的海洋地区,浮游植物面临砷中毒的问题。砷酸具有毒性,因为它在化学上类似于磷酸盐,这是浮游植物细胞生长所需的稀缺营养素。许多浮游植物,包括在温暖的海洋中最常见的浮游植物类型,Prochlorococcus,通过添加甲基使砷酸盐解毒。在这里,我们显示出海洋中最丰富的非光合作用浮游生物SAR11细菌去除了甲基,从而将有毒形式的砷释放回水中。我们假设砷化合物的甲基化和去甲基化会产生一个循环,在该循环中,浮游植物永远无法前进,必须不断将能量转移至SAR11细菌。我们认为这是一个寄生过程,并建议它可能有助于解释为什么SAR11细菌如此成功,其数量超过所有其他浮游生物。在萨加索海(Sargasso Sea)进行了野外实验,该亚热带海洋环流有时被称为海洋沙漠,因为在一年中的大部分时间里,水中的磷不足以支撑浮游植物的大量繁殖。随着海洋吸收热量并变暖,海洋沙漠正在扩大。摘要在世界海洋的许多地区,浮游植物面临着区分必需营养素磷酸盐和有毒类似物砷酸盐的问题。许多浮游植物,包括已知最丰富的浮游植物群,原绿球菌,通过还原为亚砷酸盐(AsIII)来解毒砷酸盐(AsV),然后进行甲基化和排泄甲基化的砷产品。我们合成了[〜(14)C]砷酸二甲酯(DMA),并用它来显示培养的Pelagibacter菌株HTCC7211(SAR11)细胞氧化DMA的甲基碳,从而产生〜(14)CO _(2)和ATP。我们测量了亚热带海洋回旋藻Sargasso海的P枯竭地表水中的[〜(14)C] DMA氧化速率。 [〜(14)C] DMA被Sargasso Sea浮游生物群落氧化为〜(14)CO _(2),其速率会导致估计的DMA现有存货每8.1天发生周转。从Sargasso海分离的SAR11菌株HTCC7211具有一对砷酸盐抗性基因并且对砷酸盐具有抗性,在> 65∶1的As / P比下没有生长抑制作用。在全球海洋中,Pelagibacter基因组中的砷还原酶(LMWPc_ArsC)的频率与磷酸盐浓度之间存在很强的反比关系。我们提出,Pelagibacter和其他可能的浮游细菌使甲基化的砷化合物脱甲基,再加上对砷的抗性,导致能量从浮游植物转移到细菌。我们将此归结为寄生周期,因为原则上Pelagibacter释放了砷酸盐,形成了一个正反馈回路,迫使浮游植物不断再生砷酸盐解毒产物,从而向有限的海洋区域产生能量流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号