首页> 外文期刊>MBio >Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Saccharomyces cerevisiae
【24h】

Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Saccharomyces cerevisiae

机译:纤维糖的消耗使 Saccharomyces cerevisiae 中的细胞外葡萄糖感测和葡萄糖代谢解耦

获取原文
           

摘要

ABSTRACT Glycolysis is central to energy metabolism in most organisms and is highly regulated to enable optimal growth. In the yeast Saccharomyces cerevisiae , feedback mechanisms that control flux through glycolysis span transcriptional control to metabolite levels in the cell. Using a cellobiose consumption pathway, we decoupled glucose sensing from carbon utilization, revealing new modular layers of control that induce ATP consumption to drive rapid carbon fermentation. Alterations of the beta subunit of phosphofructokinase-1 ( PFK2 ), H~(+)-plasma membrane ATPase ( PMA1 ), and glucose sensors ( SNF3 and RGT2 ) revealed the importance of coupling extracellular glucose sensing to manage ATP levels in the cell. Controlling the upper bound of cellular ATP levels may be a general mechanism used to regulate energy levels in cells, via a regulatory network that can be uncoupled from ATP concentrations under perceived starvation conditions. IMPORTANCE Living cells are fine-tuned through evolution to thrive in their native environments. Genome alterations to create organisms for specific biotechnological applications may result in unexpected and undesired phenotypes. We used a minimal synthetic biological system in the yeast Saccharomyces cerevisiae as a platform to reveal novel connections between carbon sensing, starvation conditions, and energy homeostasis.
机译:摘要糖酵解在大多数生物中是能量代谢的关键,并且受到严格调节以实现最佳生长。在酵母酿酒酵母中,通过糖酵解控制通量的反馈机制将转录控制扩展到细胞中的代谢产物水平。使用纤维二糖消耗途径,我们将葡萄糖感测与碳利用解耦,揭示了新的模块化控制层,这些控制层诱导ATP消耗以推动快速碳发酵。磷酸果糖激酶-1(PFK2),H〜(+)-质膜ATPase(PMA1)和葡萄糖传感器(SNF3和RGT2)的β亚基的改变揭示了偶联细胞外葡萄糖感测以管理细胞中ATP水平的重要性。控制细胞ATP水平的上限可能是通过调节网络调节细胞能量水平的通用机制,该调节网络可以在饥饿状态下与ATP浓度脱钩。重要信息活细胞通过进化进行了微调,可以在其本机环境中繁衍生息。为特定生物技术应用而创建生物的基因组改变可能会导致意想不到和不期望的表型。我们在酿酒酵母中使用了最小限度的合成生物学系统作为平台,以揭示碳感测,饥饿条件和能量稳态之间的新型联系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号